Project description:Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells.
Project description:Breast cancer is the most common type of cancer in women, and approximately 70% of all breast cancer patients use endocrine therapy, such as estrogen receptor modulators and aromatase inhibitors. In particular, triple-negative breast cancer (TNBC) remains a major threat due to the lack of targeted treatment options and poor clinical outcomes. Here, we found that GPR110 was highly expressed in TNBC and GPR110 plays a key role in TNBC progression by engaging the RAS signaling pathway (via Gαs activation). High expression of GPR110 promoted EMT and CSC phenotypes in breast cancer. Consequently, our study highlights the critical role of GPR110 as a therapeutic target and inhibition of GPR110 could provide a therapeutic strategy for the treatment of TNBC patients.
Project description:O-GlcNAcylation is a post-translational modification that regulates a broad range of nuclear and cytoplasmic proteins and is emerging as a key regulator of various biological processes. Although previous studies have shown that increased levels of global O-GlcNAcylation and O-GlcNActransferase are linked to the incidence of metastasis in triple negative breast cancer (TNBC) patients, the molecular basis behind this is not fully understood. In this study, we have determined that the TAK1 binding protein 3 (TAB3) was O-GlcNAcylated at Ser408 by OGT in the TNBC, which was required for its Thr404 phosphorylation, TAK1 activation and downstream nuclear factor kappa B (NF-κB) activation in TNBC. O-GlcNAcylation of TAB3 was induced by p38 MAPK and it in turn enhances the TAK1 mediated p38MAPK activation, which forms the positive feedback loop in TAB3mediated NF-κB activation. In TNBC, TAB3O-GlcNAcylationmediated cell migration and invasion by activating its downstream NF-κB. The expression of TAB3 O-GlcNAcylation increased in TNBC patients, and it was significantly correlated with poor prognoses of the patients. Our study provides insights into the mechanism of TAB3 regulating activity and suggests its important implications in TNBC metastasis.
Project description:Angiopoietin-1 (ANG1) is a pro-angiogenic regulator that contributes to the progression of solid tumors by stimulating the proliferation, migration and tube formation of vascular endothelial cells, as well as the renewal and stability of blood vessels. However, the functions and mechanisms of ANG1 in triple-negative breast cancer (TNBC) are unclear. The clinical sample database shows that a higher level of ANG1 in TNBC is associated with poor prognosis compared to non-TNBC. In addition, knockdown of ANG1 inhibits TNBC cell proliferation and induces cell cycle G1 phase arrest and apoptosis. Overexpression of ANG1 promotes tumor growth in nude mice. Mechanistically, ANG1 promotes TNBC by upregulating carboxypeptidase A4 (CPA4) expression. Overall, the ANG1-CPA4 axis can be a therapeutic target for TNBC.
Project description:This study explored the expression, biological function and prognostic role of SOX2 in triple negative breast cancer (TNBC). Quantitative real-time PCR and immunohistochemistry were used to detect the expression of SOX2 in TNBC cell lines and clinical tissues. MTT assay, Transwell assay, flow cytometry and xenograft mouse model were used to assess the biological functions of SOX2. It was found that SOX2 was up-regulated in both TNBC cell lines and clinical tissues. High expression of SOX2 was associated with shorter overall survival and disease free survival. Moreover, inhibition of SOX2 suppressed cell proliferation and invasion, induced cell apoptosis in vitro, and suppressed tumorigenesis and metastasis in vivo. In addition, analysis of TNM stage and lymph nodes infiltration among the 237 TNBC patients by paired ?2 test showed that SOX2 was inversely correlated with tumor status, our findings provided evidence that SOX2 acts as a tumor promoter in TNBC and inhibition of SOX2 could be a potential therapeutic strategy for TNBC.
Project description:Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. To identify TNBC therapeutic targets, we performed integrative bioinformatics analysis of multiple breast cancer patient-derived gene expression datasets and focused on kinases with FDA-approved or in-pipeline inhibitors. Sphingosine kinase 1 (SPHK1) was identified as a top candidate. SPHK1 overexpression or downregulation in human TNBC cell lines increased or decreased spontaneous metastasis to lungs in nude mice, respectively. SPHK1 promoted metastasis by transcriptionally upregulating the expression of the metastasis-promoting gene FSCN1 via NF?B activation. Activation of the SPHK1/NF?B/FSCN1 signaling pathway was associated with distance metastasis and poor clinical outcome in patients with TNBC. Targeting SPHK1 and NF?B using clinically applicable inhibitors (safingol and bortezomib, respectively) significantly inhibited aggressive mammary tumor growth and spontaneous lung metastasis in orthotopic syngeneic TNBC mouse models. These findings highlight SPHK1 and its downstream target, NF?B, as promising therapeutic targets in TNBC. SIGNIFICANCE: SPHK1 is overexpressed in TNBC and promotes metastasis, targeting SPHK1 or its downstream target NF?B with clinically available inhibitors could be effective for inhibiting TNBC metastasis.
Project description:Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype.
Project description:In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.
Project description:BACKGROUND:Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today's gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo. METHODS:The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo. RESULTS:Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3. CONCLUSIONS:We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.
Project description:DCAF13 is firstly identified as a substrate receptor of CUL4-DDB1 E3 ligase complex. This study disclosed that DCAF13 acted as a novel RNA binding protein (RBP) that contributed to triple-negative breast cancer (TNBC) metastasis. Clinical data obtained from TCGA and our collection showed that DCAF13 was closely correlated with poor clinicopathological characteristics and overall survival, which indicated DCAF13 may serve as a diagnostic marker for TNBC metastasis. Functionally, DCAF13 overexpression or suppression was sufficient to enhance or decrease breast cancer cell migration and invasion. Mechanistically, DCAF13 functioned as an RBP by binding with the AU-rich element (ARE) of DTX3 mRNA 3'UTR to accelerate its degradation. Moreover, we identified that DTX3 promoted the ubiquitination and degradation of NOTCH4. Finally, increased DCAF13 expression led to post-transcriptional decay of DTX3 mRNA and consequently activated of NOTCH4 signaling pathway in TNBC. In conclusion, these results identified that DCAF13 as a diagnostic marker and therapeutic target for TNBC treatment. Abbreviation: DCAF13: DDB1 and CUL4-associated factor 13; DDB1: DNA-binding protein 1; CUL4: Cullin 4; CRL4, Cullin-ring finger ligase 4; RBP: RNA binding protein; TNBC: triple-negative breast cancer; ARE: AU-rich element; DTX3: Deltex E3 ubiquitin ligase 3; HER2: human epidermal growth factor receptor 2; ER: estrogen receptor; PR: progesterone receptor; PTEN: phosphatase and tensin homolog deleted on chromosome 10; EMT: epithelial-mesenchymal transition.