Project description:Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Project description:Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical or severe COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in plasma 1/10 in 7.9% (11 of 139) of patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of IFN-I immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Project description:Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.
Project description:PurposeTo report four cases of life-threatening COVID-19 pneumonia in patients with high blood concentrations of neutralizing autoantibodies against type I interferons (IFNs), who were treated with plasma exchange (PE) as a rescue therapy.MethodsProspective case series, which included patients, diagnosed with RT-PCR-confirmed SARS-CoV-2 infection and positive autoantibodies against type I IFNs in two French intensive care units (ICUs) between October 8 and November 14, 2020. Six critically ill COVID-19 patients with no anti-IFN antibodies were used as controls. Anti-IFN autoantibodies and IFN concentrations, together with the levels of anti-SARS-CoV-2 antibodies, were measured sequentially in serum. Viral load was determined in the upper and lower respiratory tract. Patients were followed during hospital stay.ResultsThree men and one woman were included. Three of the patients had four PE sessions each, while another had three PE sessions. PE decreased the concentrations of autoantibodies against type I IFN in all four patients, whereas anti-SARS-CoV-2 antibody levels remained stable. Autoantibodies against type I IFN levels were high in tracheal aspirates of one patient and decreased after three PE sessions. By contrast, anti-IFN autoantibodies were not detected in tracheal aspirates from five control patients without detectable anti-IFN autoantibodies in serum. During PE, serum IFN-α levels slightly increased in three out of four patients, and upper respiratory tract viral load decreased in all patients. All patients were alive at day 28 of ICU admission. Two patients eventually died in the ICU, while the two survivors were discharged from the ICU at days 50 and 66.ConclusionsPE efficiently removes autoantibodies against type I IFNs, including those detected in tracheal aspirates, without affecting anti-SARS-CoV-2 antibody levels, in patients with life-threatening COVID-19 pneumonia. The clinical benefit of PE in patients with autoantibodies against type I IFNs should be tested in a larger study.
Project description:BACKGROUNDSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing rationale for administration of plasma containing SARS-CoV-2-neutralizing antibodies (nAbs) as a treatment for COVID-19. Clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood.METHODSPotential convalescent plasma donors with virologically documented SARS-CoV-2 infection were tested for serum IgG against SARS-CoV-2 spike protein S1 domain and against nucleoprotein (NP), and for nAb.RESULTSAmong 250 consecutive persons, including 27 (11%) requiring hospitalization, who were studied a median of 67 days since symptom onset, 97% were seropositive on 1 or more assays. Sixty percent of donors had nAb titers ≥1:80. Correlates of higher nAb titers included older age (adjusted OR [AOR] 1.03 per year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. nAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range 77-120) apart (P < 0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses.CONCLUSIONnAb titers correlated with COVID-19 severity, age, and sex. SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels declined, and a small proportion of convalescent individuals lacked adaptive immune responses.FUNDINGThe project was supported by the Frederick National Laboratory for Cancer Research with support from the NIAID under contract number 75N91019D00024, and was supported by the Fred Hutchinson Joel Meyers Endowment, Fast-Grants, a New Investigator award from the American Society for Transplantation and Cellular Therapy, and NIH contracts 75N93019C0063, 75N91019D00024, and HHSN272201800013C, and NIH grants T32-AI118690, T32-AI007044, K08-AI119142, and K23-AI140918.
Project description:To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.
Project description:BackgroundCurrent evidence regarding COVID-19 convalescent plasma (CCP) transfusion practices is limited and heterogeneous. We aimed to determine the impact of the use of CCP transfusion in patients with previous circulating neutralizing antibodies (nAbs) in COVID-19.MethodsProspective cohort including 102 patients with COVID-19 transfused with ABO compatible CCP on days 0-2 after enrollment. Clinical status of patients was assessed using the adapted World Health Organization (WHO) ordinal scale on days 0, 5, and 14. The nAbs titration was performed using the cytopathic effect-based virus neutralization test with SARS-CoV-2 (GenBank MT126808.1). The primary outcome was clinical improvement on day 14, defined as a reduction of at least two points on the adapted WHO ordinal scale. Secondary outcomes were the number of intensive care unit (ICU)-free days and the number of invasive mechanical ventilation-free days.ResultsBoth nAbs of CCP units transfused (p < 0.001) and nAbs of patients before CCP transfusions (p = 0.028) were associated with clinical improvements by day 14. No significant associations between nAbs of patients or CCP units transfused were observed in the number of ICU or mechanical ventilation-free days. Administration of CCP units after 10 days of symptom onset resulted in a decrease in ICU-free days (p < 0.001) and mechanical ventilation-free days (p < 0.001).ConclusionTransfusion of high titer nAbs CCP units may be a determinant in clinical strategies against COVID-19. We consider these data as useful parameters to guide future CCP transfusion practices.
Project description:ObjectivesSerologic testing for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in potential donors of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) may not be performed until after blood donation. A hospital-based recruitment program for CCP may be an efficient way to identify potential donors prospectively.MethodsPatients who recovered from known or suspected COVID-19 were identified and recruited through medical record searches and public appeals in March and April 2020. Participants were screened with a modified donor history questionnaire and, if eligible, were asked for consent and tested for SARS-CoV-2 antibodies (IgG and IgM). Participants positive for SARS-CoV-2 IgG were referred for CCP collection.ResultsOf 179 patients screened, 128 completed serologic testing and 89 were referred for CCP donation. IgG antibodies to SARS-CoV-2 were detected in 23 of 51 participants with suspected COVID-19 and 66 of 77 participants with self-reported COVID-19 confirmed by polymerase chain reaction (PCR). The anti-SARS-CoV-2 IgG level met the US Food and Drug Administration criteria for "high-titer" CCP in 39% of participants confirmed by PCR, as measured by the Ortho VITROS IgG assay. A wide range of SARS-CoV-2 IgG levels were observed.ConclusionsA hospital-based CCP donor recruitment program can prospectively identify potential CCP donors. Variability in SARS-CoV-2 IgG levels has implications for the selection of CCP units for transfusion.
Project description:BackgroundConvalescent plasma containing high levels of SARS-CoV-2 antibodies has been studied as a possible treatment for COVID-19. Better understanding of predictors of high antibody levels is needed for improving supply of high-quality therapeutic plasma.AimsWe have evaluated demographic and clinical factors associated with the probability of a convalescent plasma donor having high SARS-CoV-2 IgG antibody levels.MethodsA total of 29,585 convalescent plasma donors employed during the first and second waves of the COVID-19 pandemic in England were included in this study. All had been tested for SARS-CoV-2 IgG antibodies by EUROimmun ELISA. A multivariable logistic regression model was used to quantify the association of the demographic and clinical factors with high (EUROimmun S/Co>6.0) SARS-CoV-2 IgG antibody level.ResultsMost of the donors were male (23,024; 78%), with white ethnic background (24,598;83%) and had not been tested for SARS-CoV-2 (15,266; 52%).Overall, less than 20% of convalescent plasma donors with confirmed or suspected SARS-CoV-2 infection harboured high SARS-CoV-2 antibody levels (n = 4,978). We found that older male donors who had been hospitalised with COVID-19 were most likely to harbour high levels of antibodies. White donors were less likely to have high SARS-CoV-2 antibody levels than donors with Asian orblack ethnic backgrounds residing in affluent areas likely reflecting ethnic inequality previously associated with SARS-CoV-2 infection.DiscussionIn a time of great uncertainty, and predicted new waves associated with newly emerging SARS-CoV-2 variants, these results will help us to target future convalescent plasma collections.
Project description:BackgroundConvalescent plasma has been one of the most common treatments for COVID-19, but most clinical trial data to date have not supported its efficacy.Research questionIs rigorously selected COVID-19 convalescent plasma with neutralizing anti-SARS-CoV-2 antibodies an efficacious treatment for adults hospitalized with COVID-19?Study design and methodsThis was a multicenter, blinded, placebo-controlled randomized clinical trial among adults hospitalized with SARS-CoV-2 infection and acute respiratory symptoms for < 14 days. Enrolled patients were randomly assigned to receive one unit of COVID-19 convalescent plasma (n = 487) or placebo (n = 473). The primary outcome was clinical status (disease severity) 14 days following study infusion measured with a seven-category ordinal scale ranging from discharged from the hospital with resumption of normal activities (lowest score) to death (highest score). The primary outcome was analyzed with a multivariable ordinal regression model, with an adjusted odds ratio (aOR) < 1.0 indicating more favorable outcomes with convalescent plasma than with placebo. In secondary analyses, trial participants were stratified according to the presence of endogenous anti-SARS-CoV-2 antibodies ("serostatus") at randomization. The trial included 13 secondary efficacy outcomes, including 28-day mortality.ResultsAmong 974 randomized patients, 960 were included in the primary analysis. Clinical status on the ordinal outcome scale at 14 days did not differ between the convalescent plasma and placebo groups in the overall population (aOR, 1.04; one-seventh support interval [1/7 SI], 0.82-1.33), in patients without endogenous antibodies (aOR, 1.15; 1/7 SI, 0.74-1.80), or in patients with endogenous antibodies (aOR, 0.96; 1/7 SI, 0.72-1.30). None of the 13 secondary efficacy outcomes were different between groups. At 28 days, 89 of 482 (18.5%) patients in the convalescent plasma group and 80 of 465 (17.2%) patients in the placebo group had died (aOR, 1.04; 1/7 SI, 0.69-1.58).InterpretationAmong adults hospitalized with COVID-19, including those seronegative for anti-SARS-CoV-2 antibodies, treatment with convalescent plasma did not improve clinical outcomes.Clinical trial registrationClinicalTrials.gov; No.: NCT04362176; URL: www.Clinicaltrialsgov.