Project description:From cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety of collective behaviors. Yet quantifying such phenomena first requires tracking a significant fraction of the group members in natural conditions, a substantial and ongoing challenge. We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of sociometric colony fluctuations. These fluctuations include ~24 h cycles in the counted detections, negative correlation between bee and brood, and nightly enhancement of bees inside comb cells. We combine detected positions with visual features of organism-centered images to track individuals over time and through challenging occluding events, recovering ~79% of bee trajectories from five observation hives over 5 min timespans. The trajectories reveal important individual behaviors, including waggle dances and crawling inside comb cells. Our results provide opportunities for the quantitative study of collective bee behavior and for advancing tracking techniques of crowded systems.
Project description:Strength auditing of European honey bee (Apis mellifera Linnaeus, 1758 [Hymenoptera: Apidae]) colonies is critical for apiarists to manage colony health and meet pollination contracts conditions. Colony strength assessments used during pollination servicing in Australia typically use a frame-top cluster-count (Number of Frames) inspection. Sensing technology has potential to improve auditing processes, and commercial temperature sensors are widely available. We evaluate the use and placement of temperature sensing technology in colony strength assessment and identify key parameters linking temperature to colony strength. Custom-built temperature sensors measured hive temperature across the top of hive brood boxes. A linear mixed-effect model including harmonic sine and cosine curves representing diurnal temperature fluctuations in hives was used to compare Number of Frames with temperature sensor data. There was a significant effect of presence of bees on hive temperature and range: hives without bees recorded a 5.5°C lower mean temperature and greater temperature ranges than hives containing live bees. Hives without bees reach peak temperature earlier than hives with bees, regardless of colony strength. Sensor placement across the width of the hive was identified as an important factor when linking sensor data with colony strength. Data from sensors nearest to the hive geometric center were found to be more closely linked to colony strength. Furthermore, a one unit increase in Number of Frames was significantly associated with a mean temperature increase of 0.36°C. This demonstrates that statistical models that account for diurnal temperature patterns could be used to predict colony strength from temperature sensor data.
Project description:Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health.
Project description:Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.
Project description:ObjectiveWe demonstrate and evaluate the first markerless motion tracker compatible with PET, MRI, and simultaneous PET/MRI systems for motion correction (MC) of brain imaging.MethodsPET and MRI compatibility is achieved by careful positioning of in-bore vision extenders and by placing all electronic components out-of-bore. The motion tracker is demonstrated in a clinical setup during a pediatric PET/MRI study including 94 pediatric patient scans. PET MC is presented for two of these scans using a customized version of the Multiple Acquisition Frame method. Prospective MC of MRI acquisition of two healthy subjects is demonstrated using a motion-aware MRI sequence. Real-time motion estimates are accompanied with a tracking validity parameter to improve tracking reliability.ResultsFor both modalities, MC shows that motion induced artifacts are noticeably reduced and that motion estimates are sufficiently accurate to capture motion ranging from small respiratory motion to large intentional motion. In the PET/MRI study, a time-activity curve analysis shows image improvements for a patient performing head movements corresponding to a tumor motion of ±5-10 mm with a 19% maximal difference in standardized uptake value before and after MC.ConclusionThe first markerless motion tracker is successfully demonstrated for prospective MC in MRI and MC in PET with good tracking validity.SignificanceAs simultaneous PET/MRI systems have become available for clinical use, an increasing demand for accurate motion tracking and MC in PET/MRI scans has emerged. The presented markerless motion tracker facilitate this demand.
Project description:The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences.
Project description:Colony brood levels, frames of bees (adult bee mass) and internal hive temperature were monitored for 60 colonies for each of two years as they were moved from agricultural, tree crop and mountain landscapes in southern California to blueberry and almond pollination sites. Hive weight was also continuously monitored for 20 of those hives for 6 weeks for both years, during commercial pollination. Pesticide residues in wax, honey and beebread samples were analyzed by composite apiary samples. While colonies in mountain sites had more adult bees and brood than those in agricultural sites in August, by October brood levels were higher in colonies from agricultural sites. Though hives from different original landscapes differed in size in October, hive assessments revealed no differences between the groups after co-wintering when graded for commercial almond pollination. Beebread from hives in agricultural sites had greater agrochemical diversity and in general higher pesticide hazard quotients than those from mountain sites, but those hives also had higher and more constant temperatures from September until January than hives from mountain sites. Hives placed in commercial almond pollination gained on average 287 g per d, compared to an average loss of 68 g per d for colonies in commercial blueberry pollination, although weight data indicated greater foraging effort by colonies in blueberries, possibly due to the proximity and abundance of almond pollen during bloom. Temperature monitoring was effective at distinguishing hive groups and had the best overall value in terms of equipment, installation, colony disturbance and information yield.
Project description:Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines.
Project description:Beekeepers regularly employ management practices to mitigate losses during the winter, often considered the most difficult time during a colony life cycle. Management recommendations involving covering or wrapping hives in insulation during winter have a long history; over 100 years ago, most recommendations for overwintering in cold climates involved heavy insulation wraps or moving hives indoors. These recommendations began to change in the mid-20th century, but hive covers are still considered useful and are described in contemporary beekeeping manuals and cooperative extension materials. However, most of the data supporting their use is published primarily in non-peer reviewed trade journals and was collected >40 years ago. In this time, the beekeeping environment has changed substantially, with new pressures from pathogens, agrochemicals, and land use changes. Here, we provide an update to the historical literature, reporting a randomized experiment testing the effectiveness of a common honey bee hive cover system across eight apiaries in central Illinois, USA, a temperate region dominated by conventional annual agriculture. We found that, when other recommended overwintering preparations are performed, covered colonies consumed less food stores and survived better than uncovered controls (22.5% higher survival). This study highlights the value of hive covers, even in an area not subject to extremely cold winter conditions, and these data can aid the production of evidence-based extension recommendations for beekeepers.