Project description:Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.
Project description:Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m-2 and current efficiency of 1.22-5.11 cd A-1. This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.
Project description:The goal of present study is to explore how the size and functionalization of graphene quantum dots (GQDs) affect their sensing capabilities. Specifically, we investigated the adsorption of SO2, SOF2, SO2F2, and SF6 on GQDs that were functionalized with -CH3, -COCH3, and -NH2. We used density functional theory to analyse the electronic properties of these functionalized GQDs and found that the functionalization significantly altered their electronic properties. For example, the B3LYP H-L gap of pristine triangulene was 3.9eV, while the H-L gap of functionalized triangulene ranged from 2.8 eV to 3.6 eV (using the B3LYP functional). Our results indicate that -NH2 functionalized phenalenyl and triangulene provide strong interaction with SO2, with adsorption energies of -0.429 eV and -0.427 eV, respectively. These adsorption properties exhibit physisorption, leading to high gas sensitivity and superior recovery time. The findings of this study provide new insights into the potential use of GQDs for detecting the decomposed constituents of sulfur hexafluoride, which can be beneficial for assessing the operation status of SF6 insulated devices. Overall, our calculations suggest that functionalized GQDs can be employed in gas insulated systems for partial discharge detection.
Project description:Asymmetric Janus transition metal dichalcogenide MoSSe is a promising catalytic material due to the intrinsic in-plane dipole of its opposite faces. The atomic description of the structures observed by experimental techniques is relevant to tuning and optimizing its surface reaction processes. Furthermore, the experimentally observed triangular morphologies in MoSSe suggest that an analysis of the chemical environment of its edges is vital to understand its reactivity. Here we analyze the size-shape stability among different triangular structures-quantum- dots proposed from the ideal S(-1010) and Mo(10-10) terminations. Our stability analysis evidenced that the S-Se termination is more stable than Mo; moreover, as the size of the quantum dot increases, its stability increases as well. Besides, a trend is observed, with the appearance of elongated Mo-S/Se bonds at symmetric positions of the edges. Tersoff-Hamann scanning tunneling microscopy images for both faces of the stablest models are presented. Electrostatic potential isosurfaces denote that the basal plane on the S face of both configurations remains the region with more electron density concentration. These results point toward the differentiated activity over both faces. Finally, our study denotes the exact atomic arrangement on the edges of MoSSe quantum dots corresponding with the formation of S/Se dimers who decorates the edges and their role along with the faces as catalytic sites.
Project description:With growing concerns about health issues worldwide, elegant sensors with high sensitivity and specificity for virus/antigens (Ag) detection are urgent to be developed. Homogeneous immunoassays (HIA) are an important technique with the advantages of small sample volumes requirement and pretreatment-free process. HIA are becoming more favorable for the medical diagnosis and disease surveillance than heterogeneous immunoassays. An important subset of HIA relies on the effect of fluorescence resonance energy transfer (FRET) via a donor-acceptor (D-A) platform, e.g., quantum dots (QDs) donor based FRET system. Being an excellent plasmonic material, silver triangular nanoplates (STNPs) have unique advantages in displaying surface plasmon resonance in the visible to near infrared spectral region, which make them a better acceptor for pairing with QDs in a FRET-based sensing system. However, the reported STNPs generally exhibited broad size distributions, which would greatly restrict their application as HIA acceptor for high detection sensitivity and specificity purpose. In this work, uniform STNPs and red-emitting QDs are firstly applied to construct FRET nanoplatform in the advanced HIA and further be exploited for analyzing virus Ag. The uniform STNPs/QDs nanoplatform based medical sensor provides a straightforward and highly sensitive method for Ag analysis in homogeneous form.
Project description:In this work, carbon dots (CDs) and black phosphorus quantum dots (BPQDs) were used to decorate titanium dioxide to enhance the photoelectrochemical (PEC) properties of the nanocomposites (TiO2@CDs@BPQDs), and the modified nanocomposites were used to sensitively detect DNA. We used the hydrothermal method and citric acid as a raw material to prepare CDs with good dispersion and strong fluorescence properties. BPQDs with a uniform particle size were prepared from black phosphorus crystals. The nanocomposites were characterized by fluorescence spectroscopy, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The preparation method of the working electrode was explored, the detection conditions were optimized, and the sensitive detection of target DNA was achieved. The results demonstrate that CDs and BPQDs with good optical properties were successfully prepared, and they were successfully combined with TiO2 to improve the PEC performance of TiO2@CDs@BPQDs. The TiO2-based PEC DNA detection method was constructed with a detection limit of 8.39 nM. The constructed detection method has many advantages, including good sensitivity, a wide detection range, and good specificity. This work provides a promising PEC strategy for the detection of other biomolecules.
Project description:Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.
Project description:Genodermatoses are a group of inherited skin diseases whose diagnosis is challenging due to their rarity as well as their clinical and genetic diversity. The majority of genodermatoses are autosomal or X‑linked inherited, but mosaic forms are also observed. Genodermatoses comprise various phenotypes ranging from limited cutaneous disease to severe cutaneous and extracutaneous involvement and may also be early warning signs of a multisystemic disorder. Despite recent advances in genetic technology and skin imaging modalities, dermoscopy can be useful for screening, diagnosis, and treatment follow-up. In ectopic mineralization and lysosomal storage disorders (pseudoxanthoma elasticum and Fabry disease, respectively), cutaneous manifestations may indicate involvement of other organs. In keratinization diseases (e.g., ichthyoses) and acantholytic skin fragility disorders (e.g., Darier and Hailey-Hailey disease), dermoscopy may help to assess treatment response by visualizing background erythema, hyperkeratosis, and interkeratinocyte space prominence. Dermoscopy is a noninvasive, easily accessible, useful, in vivo assessment tool that is well established in dermatology to recognize characteristic features of genodermatoses.
Project description:PurposeOrbital myiasis is a rare condition. We report a case of massive orbital myiasis (ophthalmomyiasis profunda) arising from nasal myiasis and caused by Chrysomya bezziana in a patient with diabetes.ObservationsA 55-year-old woman presented with massive orbital myiasis from larvae invading the entire orbit, with only a small part of sclera and bulbar conjunctiva left of the ocular structures left unaffected. The patient complained of breathing difficulty and drooping of the left eyelid with no other significant complaints. Computed tomography of paranasal sinuses was performed to determine the extent of intraocular invasion of larvae and the surrounding area that might be involved. The larvae filled the nasal and orbital cavity with bony destruction. The patient had a history of diabetes mellitus with uncontrolled blood sugar.Conclusions and importanceOrbital myiasis is an infestation of any anatomical structure of the orbit with larvae from the order Diptera. To our knowledge, this is the first reported case of massive orbital myiasis arising from nasal myiasis caused by C. bezziana in a patient with diabetes. Eliminating the causative larvae and topical treatment with antibiotics eye ointment therapy improved the patient's symptoms. Epidemiological data are required to improve documentation of the incidence rate of myiasis.