Ontology highlight
ABSTRACT: Background
Atherosclerosis (AS) is a primary cause of coronary heart and vascular diseases. Long non-coding RNAs (lncRNAs) are indicated to regulate AS progression. This study aimed to reveal the biological roles of lncRNA myocardial infarction associated transcript (MIAT) in oxidized low-density lipoprotein (ox-LDL)-induced human vascular smooth muscle cells (VSMCs).Methods
The RNA levels of MIAT, microRNA-641 (miR-641) and stromal interaction molecule 1 (STIM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels were determined by western blot analysis. Cell proliferation was assessed by cell colony formation and DNA content quantitation assays. Cell migration and invasion were demonstrated by wound-healing and transwell assays. The putative binding relationships between miR-641 and MIAT or STIM1 were predicted by starbase online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays.Results
MIAT and STIM1 expression were substantially upregulated, whereas miR-641 expression was downregulated in ox-LDL-induced VSMCs compared with control groups. Functionally, MIAT silencing attenuated ox-LDL-induced cell proliferation, migration and invasion in VSMCs; however, these effects were impaired by miR-641 inhibitor. STIM1 overexpression also restrained miR-641-mediated impacts on cell proliferation and metastasis under ox-LDL. Mechanistically, MIAT acted as a sponge for miR-641, and miR-641 was associated with STIM1.Conclusions
MIAT silencing hindered ox-LDL-induced cell proliferation, migration and invasion by downregulating STIM1 expression through binding to miR-641 in VSMCs. The mechanism provided us with a new target for AS therapy.
SUBMITTER: Ma G
PROVIDER: S-EPMC8139145 | biostudies-literature |
REPOSITORIES: biostudies-literature