Project description:Uncertainty remains about how long the protective immune responses against severe acute respiratory syndrome coronavirus 2 persists, and suspected reinfection in recovered patients has been reported. We describe a case of reinfection from distinct virus lineages in Brazil harboring the E484K mutation, a variant associated with escape from neutralizing antibodies.
Project description:BackgroundThe degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual.MethodsA 25-year-old man who was a resident of Washoe County in the US state of Nevada presented to health authorities on two occasions with symptoms of viral infection, once at a community testing event in April, 2020, and a second time to primary care then hospital at the end of May and beginning of June, 2020. Nasopharyngeal swabs were obtained from the patient at each presentation and twice during follow-up. Nucleic acid amplification testing was done to confirm SARS-CoV-2 infection. We did next-generation sequencing of SARS-CoV-2 extracted from nasopharyngeal swabs. Sequence data were assessed by two different bioinformatic methodologies. A short tandem repeat marker was used for fragment analysis to confirm that samples from both infections came from the same individual.FindingsThe patient had two positive tests for SARS-CoV-2, the first on April 18, 2020, and the second on June 5, 2020, separated by two negative tests done during follow-up in May, 2020. Genomic analysis of SARS-CoV-2 showed genetically significant differences between each variant associated with each instance of infection. The second infection was symptomatically more severe than the first.InterpretationGenetic discordance of the two SARS-CoV-2 specimens was greater than could be accounted for by short-term in vivo evolution. These findings suggest that the patient was infected by SARS-CoV-2 on two separate occasions by a genetically distinct virus. Thus, previous exposure to SARS-CoV-2 might not guarantee total immunity in all cases. All individuals, whether previously diagnosed with COVID-19 or not, should take identical precautions to avoid infection with SARS-CoV-2. The implications of reinfections could be relevant for vaccine development and application.FundingNevada IDEA Network of Biomedical Research, and the National Institute of General Medical Sciences (National Institutes of Health).
Project description:BackgroundThe city of Manaus, north Brazil, was stricken by a second epidemic wave of SARS-CoV-2 despite high seroprevalence estimates, coinciding with the emergence of the Gamma (P.1) variant. Reinfections were postulated as a partial explanation for the second surge. However, accurate calculation of reinfection rates is difficult when stringent criteria as two time-separated RT-PCR tests and/or genome sequencing are required. To estimate the proportion of reinfections caused by Gamma during the second wave in Manaus and the protection conferred by previous infection, we identified anti-SARS-CoV-2 antibody boosting in repeat blood donors as a mean to infer reinfection.MethodsWe tested serial blood samples from unvaccinated repeat blood donors in Manaus for the presence of anti-SARS-CoV-2 IgG antibodies using two assays that display waning in early convalescence, enabling the detection of reinfection-induced boosting. Donors were required to have three or more donations, being at least one during each epidemic wave. We propose a strict serological definition of reinfection (reactivity boosting following waning like a V-shaped curve in both assays or three spaced boostings), probable (two separate boosting events) and possible (reinfection detected by only one assay) reinfections. The serial samples were used to divide donors into six groups defined based on the inferred sequence of infection and reinfection with non-Gamma and Gamma variants.ResultsFrom 3655 repeat blood donors, 238 met all inclusion criteria, and 223 had enough residual sample volume to perform both serological assays. We found 13.6% (95% CI 7.0-24.5%) of all presumed Gamma infections that were observed in 2021 were reinfections. If we also include cases of probable or possible reinfections, these percentages increase respectively to 22.7% (95% CI 14.3-34.2%) and 39.3% (95% CI 29.5-50.0%). Previous infection conferred a protection against reinfection of 85.3% (95% CI 71.3-92.7%), decreasing to respectively 72.5% (95% CI 54.7-83.6%) and 39.5% (95% CI 14.1-57.8%) if probable and possible reinfections are included.ConclusionsReinfection by Gamma is common and may play a significant role in epidemics where Gamma is prevalent, highlighting the continued threat variants of concern pose even to settings previously hit by substantial epidemics.
Project description:As the coronavirus disease 2019 (COVID-19) pandemic continues, reinfection is likely to become increasingly common. However, confirming COVID-19 reinfection is difficult because it requires whole-genome sequencing of both infections to identify the degrees of genetic differences. Since the first reported case of reinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Republic of Korea in April 2020, four additional cases were classified as suspected reinfection cases. We performed whole-genome sequencing of viral RNA extracted from swabs obtained at the initial infection and reinfection stages of these four suspected cases. The interval between initial infection and reinfection of all four suspected cases was more than 3 months. All four patients were young (10-29 years), and they displayed mild symptoms or were asymptomatic during the initial infection and reinfection episodes. The analysis of genome sequences combined with the epidemiological results revealed that only two of the four cases were confirmed as reinfection, and both were reinfected with the Epsilon variant. Due to the prolonged COVID-19 pandemic, the possibility of reinfections with SARS-CoV-2 variants is increasing, as reported in our study. Therefore, continuous monitoring of cases is necessary.
Project description:A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (median: 62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of these mutations were rarely observed in public databases and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.
Project description:From February 26, 2020 to March 11, 2021, coronavirus disease 2019 (COVID-19) pandemic resulted in 11,439,558 cases and 277,102 deaths in Brazil. Among them, 2,195,130 cases and 63,965 deaths occurred in Sao Paulo State, Southeast Brazil. The recent emergence and rise of new variants of SARS-CoV-2 is of concern because of their higher transmissibility and possible association with more severe disease. Cases of SARS-CoV-2 reinfections have been described since December 2020 in Brazil. This report describes two cases of COVID-19 reinfection, that occurred five and six months after the first infection, during the second wave of the pandemic in Sao Paulo State. Both patients presented mild symptoms in the two COVID-19 episodes and different lineages of SARS-CoV-2 were identified: B.1.1.33 and B.1.1.28 lineages in case 1 and B1.1.128 and P. 2 lineages in case 2.
Project description:ObjectivesTo date, reported SARS-CoV-2 reinfection cases are mainly from strains belonging to different clades. As the pandemic advances, a few lineages have become dominant in certain areas leading to reinfections by similar strains. Here, we report a reinfection case within the same clade of the initial infection in a symptomatic 28-year-old-male in Quito-Ecuador.MethodsInfection was detected by reverse transcription-polymerase chain reaction, and immune response evaluated by antibody testing. Whole-genome sequencing was performed and phylogenetic analysis conducted to determine relatedness.ResultsBoth the infection and the reinfection strains were assigned as Nextstrain 20B, Pangolin lineage B.1.1 and GISAID clade O. Our analysis indicated 4-6 fold more nucleotide changes than are expected for reactivation or persistence compared with the natural rate of SARS-CoV-2 mutation (∼2-3 nucleotide changes per month), thus supporting reinfection. Furthermore, approximately 3 months after the second infection, COVID-19 antibodies were not detectable in the patient, suggesting potential vulnerability to a third infection.ConclusionsOur results showed evidence of SARS-CoV-2 reinfection within the same clade in Ecuador, indicating that previous exposure to SARS-CoV-2 does not guarantee immunity in all cases.
Project description:We describe a case of prolonged COVID-19 caused by the SARS-CoV-2 Gamma variant in a fully vaccinated healthcare worker, 387 days after an infection caused by lineage B.1.1.33. Infections were confirmed by whole-genome sequencing and corroborated by the detection of neutralizing antibodies in convalescent serum samples. Considering the permanent exposure of this healthcare worker to SARS-CoV-2, the waning immunity after the first infection, the low efficacy of the inactivated vaccine at preventing COVID-19, the immune escape of the Gamma variant (VOC), and the burden of post-COVID syndrome, this individual would have benefited from an additional dose of a heterologous vaccine.
Project description:A healthcare worker presented with fever, cough, headache and tested positive by SARS-CoV-2 real time reverse transcriptase polymerase chain reaction (qRT-PCR). He got admitted to hospital and recovered after 14 days. After 2 months, as a screening protocol considering the high risk setup he got tested and again found to be positive for SARS-CoV-2 by qRT-PCR. Our patient had detectable levels of Anti-SARS-CoV-2 IgG antibodies during the reinfection but found negative for Neutralizing antibodies (NAb). Our findings suggest that the person after the initial infection might not develop the desired protective immunity to prevent the reinfection as demonstrated by absence of NAb.