Transcriptome-wide association study uncovers the role of essential genes in anthracycline-induced cardiotoxicity.
Ontology highlight
ABSTRACT: Anthracyclines are highly effective chemotherapeutic agents; however, their clinical utility is limited by severe anthracycline-induced cardiotoxicity (ACT). Genome-wide association studies (GWAS) have uncovered several genetic variants associated with ACT, but the impact of these findings requires further elucidation. We conducted a transcriptome-wide association study (TWAS) using our previous GWAS summary statistics (n = 280 patients) to identify gene expression-related associations with ACT. We identified a genetic association between decreased expression of GDF5 and ACT (Z-score = -4.30, P = 1.70 × 10-5), which was replicated in an independent cohort (n = 845 patients, P = 3.54 × 10-3). Additionally, cell viability of GDF5-silenced human cardiac myocytes was significantly decreased in response to anthracycline treatment. Subsequent gene set enrichment and pathway analyses of the TWAS data revealed that genes essential for survival, cardioprotection and response to anthracyclines, as well as genes involved in ribosomal, spliceosomal and cardiomyopathy pathways are important for the development of ACT.
SUBMITTER: Scott EN
PROVIDER: S-EPMC8140137 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA