An enhanced method for nucleic acid detection with CRISPR-Cas12a using phosphorothioate modified primers and optimized gold-nanopaticle strip.
Ontology highlight
ABSTRACT: CRISPR-Cas12a system has been shown promising for nucleic acid diagnostics due to its rapid, portable and accurate features. However, cleavage of the amplicons and primers by the cis- and trans-activity of Cas12a hinders the attempts to integrate the amplification and detection into a single reaction. Through phosphorothioate modification of primers, we realized onepot detection with high sensitivity using plasmids of SARS-CoV-2, HPV16 and HPV18. We also identified the activated Cas12a has a much higher affinity to C nucleotide-rich reporter than others. By applying such reporters, the reaction time required for a lateral-flow readout was significantly reduced. Furthermore, to improve the specificity of the strip-based assay, we created a novel reporter and, when combined with a customized gold-nanopaticle strip, the readout was greatly enhanced owing to the elimination of the nonspecific signal. This established system, termed Targeting DNA by Cas12a-based Eye Sight Testing in an Onepot Reaction (TESTOR), was validated using clinical cervical scrape samples for human papillomaviruses (HPVs) detection. Our system represents a general approach to integrating the nucleic acid amplification and detection into a single reaction in CRISPR-Cas systems, highlighting its potential as a rapid, portable and accurate detection platform of nucleic acids.
SUBMITTER: Gong J
PROVIDER: S-EPMC8141609 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA