Age-related DNA methylation in paired normal and tumour breast tissue in Chinese breast cancer patients.
Ontology highlight
ABSTRACT: Age-related DNA methylation is a potential mechanism contributing to breast cancer development. Studies of primarily Caucasian women have identified many CpG sites of age-related methylation in non-diseased breast tissue possibly driving cancer development over time. There is a paucity of studies involving Asian women whose ages at breast cancer onset are usually younger than Caucasians. We identified the 181 most consistent age-related methylation events in non-diseased breast tissue across published studies. Age-related methylation events were measured in adjacent normal and breast tumour tissue in an exclusively Asian population at the previously identified age-related methylation sites. Age-related methylation was found in 118 probes in adjacent normal breast tissue. Methylation of 99% of these sites was increased with age and predominantly located on CpG islands in promoter regions. To ascertain biological relevance to breast cancer, we focused on the 37 sites with overall higher methylation in tumour compared to adjacent normal samples. Some sites positively related to age, including AQP5 and CORO6, inversely correlated with gene expression. Several others have known involvement in suppression of carcinogenesis including GPC5 and SST, suggesting that perturbation of epigenetic regulation at these sites due to ageing may contribute to the progression of carcinogenesis. This study highlights an age-related methylation landscape in non-tumour tissue, consistent not just across studies, but also across different populations. We present candidate age-related methylation sites warranting further investigation as potential epigenetic drivers of breast cancer. They may serve as potential targets of site-specific demethylation intervention strategies for the prevention of age-related breast cancer.
Project description:Age is a key risk factor for breast cancer and epigenetic alterations may contribute to age-related increases in breast cancer risk, though the relation of age-related methylation in normal breast tissues with altered methylation in breast tumors is unclear. We investigated the relation of age with DNA methylation in normal breast tissues genome-wide using two data sets from the Gene Expression Omnibus (GEO) database (GSE32393 and GSE31979). We validated our observations in an independent set of normal breast tissues, examined age-related methylation in normal breast for enrichment of genomic features, and compared age-related methylation in normal tissue with methylation alterations in breast tumors. Between the two array-based methylation data sets, there were 204 CpG loci with significant (P<0.05) and consistent age-related methylation, 97% of which were increases in methylation. Our validation sets confirmed the direction of age-related DNA methylation changes in all measured regions. Among the 204 age-related CpG loci, we observed a significant enrichment for CpG islands (P = 8.7E-6) and polycomb group protein target genes (P = 0.03). In addition, 24 of the 204 CpGs with age-related methylation in normal breast were significantly differentially methylated between normal and breast tumor tissues. We identified consistent age-related methylation changes in normal breast tissue that are further altered in breast tumors and may represent early events contributing to breast carcinogenesis. This work identifies age-related methylation in normal breast tissue and begins to deconstruct the contribution of aging to epigenetic alterations present in breast tumors.
Project description:Despite known age-related DNA methylation (aDNAm) changes in breast tumors, little is known about aDNAm in normal breast tissues. Breast tissues from a cross-sectional study of 121 cancer-free women, were assayed for genome-wide DNA methylation. mRNA expression was assayed by microarray technology. Analysis of covariance was used to identify aDNAm's. Altered methylation was correlated with expression of the corresponding gene and with DNA methyltransferase protein DNMT3A, assayed by immunohistochemistry. Publically-available TCGA-BRCA data were used for replication. 1,214 aDNAm's were identified; 97% with increased methylation, and all on autosomes. Sites with increased methylation were predominantly in CpG lslands and non-enhancers. aDNAm's with decreased methylation were generally located in intergenic regions, non-CpG Islands, and enhancers. Of the aDNAm's identified, 650 are known to be involved in cancer, including ESR1 and beta-estradiol responsive genes. Expression of DNMT3A was positively associated with age. Two aDNAm's showed borderline significant associations with DNMT3A expression; KRR1 (OR 6.57, 95% CI: 2.51-17.23) and DHRS12 (OR 6.08, 95% CI: 2.33-15.86). A subset of aDNAm's co-localized within vulnerable regions for somatic mutations in cancers including breast cancer. Expression of C19orf48 was inversely and significantly correlated with its methylation level. In the TCGA dataset, 84% and 64% of the previously identified aDNAm's were correlated with age in both normal-adjacent and tumor breast tissues, with differential associations by histological subtype. Given the similarity of findings in the breast tissues of healthy women and breast tumors, aDNAm's may be one pathway for increased breast cancer risk with age.
Project description:BackgroundThe underlying biological mechanisms through which epidemiologically defined breast cancer risk factors contribute to disease risk remain poorly understood. Identification of the molecular changes associated with cancer risk factors in normal tissues may aid in determining the earliest events of carcinogenesis and informing cancer prevention strategies.MethodsHere we investigated the impact cancer risk factors have on the normal breast epigenome by analyzing DNA methylation genome-wide (Infinium 450 K array) in cancer-free women from the Susan G. Komen Tissue Bank (n = 100). We tested the relation of established breast cancer risk factors, age, body mass index, parity, and family history of disease, with DNA methylation adjusting for potential variation in cell-type proportions.ResultsWe identified 787 cytosine-guanine dinucleotide (CpG) sites that demonstrated significant associations (Q value <0.01) with subject age. Notably, DNA methylation was not strongly associated with the other evaluated breast cancer risk factors. Age-related DNA methylation changes are primarily increases in methylation enriched at breast epithelial cell enhancer regions (P = 7.1E-20), and binding sites of chromatin remodelers (MYC and CTCF). We validated the age-related associations in two independent populations, using normal breast tissue samples (n = 18) and samples of normal tissue adjacent to tumor tissue (n = 97). The genomic regions classified as age-related were more likely to be regions altered in both pre-invasive (n = 40, P = 3.0E-03) and invasive breast tumors (n = 731, P = 1.1E-13).ConclusionsDNA methylation changes with age occur at regulatory regions, and are further exacerbated in cancer, suggesting that age influences breast cancer risk in part through its contribution to epigenetic dysregulation in normal breast tissue.
Project description:Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.
Project description:Circulating Tumour Cells (CTCs) and circulating tumour DNA (ctDNA) represent a non-invasive liquid biopsy approach for the follow-up and therapy management of cancer patients. We evaluated whether DNA methylation status in CTCs and ctDNA is comparable and whether it reflects the status of primary tumours. We compared the methylation status of three genes, SOX17, CST6 and BRMS1 in primary tumours, corresponding CTCs and ctDNA in 153 breast cancer patients and healthy individuals, by using real time methylation specific PCR. We report a clear association between the EpCAM-positive CTC-fraction and ctDNA for SOX17 promoter methylation both for patients with early (P = 0.001) and metastatic breast cancer (P = 0.046) but not for CST6 and BRMS1. In early breast cancer, SOX17 promoter methylation in the EpCAM-positive CTC-fraction was associated with CK-19 mRNA expression (P = 0.006) and worse overall survival (OS) (P = 0.044). In the metastatic setting SOX17 promoter methylation in ctDNA was highly correlated with CK-19 (P = 0.04) and worse OS (Ρ = 0.016). SOX17 methylation status in CTCs and ctDNA was comparable and was associated with CK-19 expression but was not reflecting the status of primary tumours in breast cancer. DNA methylation analysis of SOX17 in CTCs and matched ctDNA provides significant prognostic value.
Project description:BackgroundLimited evidence suggests that female breast tissue ages faster than other parts of the body according to an epigenetic biomarker of aging known as the "epigenetic clock." However, it is unknown whether breast tissue samples from healthy women show a similar accelerated aging effect relative to other tissues, and what could drive this acceleration. The goal of this study is to validate our initial finding of advanced DNA methylation (DNAm) age in breast tissue, by directly comparing it to that of peripheral blood tissue from the same individuals, and to do a preliminary assessment of hormonal factors that could explain the difference.MethodsWe utilized n = 80 breast and 80 matching blood tissue samples collected from 40 healthy female participants of the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center who donated these samples at two time points spaced at least a year apart. DNA methylation levels (Illumina 450K platform) were used to estimate the DNAm age.ResultsDNAm age was highly correlated with chronological age in both peripheral blood (r = 0.94, p < 0.0001) and breast tissues (r = 0.86, p < 0.0001). A measure of epigenetic age acceleration (age-adjusted DNAm Age) was substantially increased in breast relative to peripheral blood tissue (p = 1.6 × 10-11). The difference between DNAm age of breast and blood decreased with advancing chronologic age (r = -0.53, p = 4.4 × 10-4).ConclusionsOur data clearly demonstrate that female breast tissue has a higher epigenetic age than blood collected from the same subject. We also observe that the degree of elevation in breast diminishes with advancing age. Future larger studies will be needed to examine associations between epigenetic age acceleration and cumulative hormone exposure.
Project description:BACKGROUND:The well-established association of chronological age with changes in DNA methylation is primarily founded on the analysis of large sets of blood samples, while conclusions regarding tissue-specificity are typically based on small number of samples, tissues and CpGs. Here, we systematically investigate the tissue-specific character of age-related DNA methylation changes at the level of the CpG, functional genomic region and nearest gene in a large dataset. RESULTS:We assembled a compendium of public data, encompassing genome-wide DNA methylation data (Illumina 450k array) on 8092 samples from 16 different tissues, including 7 tissues with moderate to high sample numbers (Dataset size range 96-1202, Ntotal?=?2858). In the 7 tissues (brain, buccal, liver, kidney, subcutaneous fat, monocytes and T-helper cells), we identified 7850 differentially methylated positions that gained (gain-aDMPs; cut-offs: Pbonf???0.05, effect size ??2%/10 years) and 4,287 that lost DNA methylation with age (loss-aDMPs), 92% of which had not previously been reported for whole blood. The majority of all aDMPs identified occurred in one tissue only (gain-aDMPs: 85.2%; loss-aDMPs: 97.4%), an effect independent of statistical power. This striking tissue-specificity extended to both the functional genomic regions (defined by chromatin state segmentation) and the nearest gene. However, aDMPs did accumulate in regions with the same functional annotation across tissues, namely polycomb-repressed CpG islands for gain-aDMPs and regions marked by active histone modifications for loss-aDMPs. CONCLUSION:Our analysis shows that age-related DNA methylation changes are highly tissue-specific. These results may guide the development of improved tissue-specific markers of chronological and, perhaps, biological age.
Project description:Both age-dependent and age-independent alteration of DNA methylation in human tissues are functionally associated with the development of many malignant and non-malignant human diseases. TCGA-KIRC data were biometrically analyzed to identify new loci with age-dependent DNA methylation that may contribute to tumor risk in normal kidney tissue. ANKRD34B and ZIC1 were evaluated as candidate genes by pyrosequencing of 539 tissues, including 239 normal autopsy, 157 histopathologically tumor-adjacent normal, and 143 paired tumor kidney samples. All candidate CpG loci demonstrated a strong correlation between relative methylation levels and age (R = 0.70-0.88, p < 2 × 10-16) and seven out of 10 loci were capable of predicting chronological age in normal kidney tissues, explaining 84% of the variance (R = 0.92). Moreover, significantly increased age-independent methylation was found for 9 out of 10 CpG loci in tumor-adjacent tissues, compared to normal autopsy tissues (p = 0.001-0.028). Comparing tumor and paired tumor-adjacent tissues revealed two patient clusters showing hypermethylation, one cluster without significant changes in methylation, and a smaller cluster demonstrating hypomethylation in the tumors (p < 1 × 10-10). Taken together, our results show the presence of additional methylation risk factors besides age for renal cancer in normal kidney tissue. Concurrent tumor-specific hypermethylation suggests a subset of these loci are candidates for epigenetic renal cancer susceptibility.
Project description:BACKGROUND:DNA methylation (DNAm) age has been widely accepted as an epigenetic biomarker for biological aging. Emerging evidence suggests that DNAm age can be tissue-specific and female breast tissue ages faster than other parts of the body. The Horvath clock, which estimates DNAm age across multiple tissues, has been shown to be poorly calibrated in breast issue. We aim to develop a model to estimate breast tissue-specific DNAm age. METHODS:Genome-wide DNA methylation sequencing data were generated for 459 normal, 107 tumor, and 45 paired adjacent-normal breast tissue samples. We determined a novel set of 286 breast tissue-specific clock CpGs using penalized linear regression and developed a model to estimate breast tissue-specific DNAm age. The model was applied to estimate breast tissue-specific DNAm age in different breast tissue types and in tumors with distinct clinical characteristics to investigate cancer-related aging effects. RESULTS:Our estimated breast tissue-specific DNAm age was highly correlated with chronological age (r = 0.88; p = 2.9 × 10-31) in normal breast tissue. Breast tumor tissue samples exhibited a positive epigenetic age acceleration, where DNAm age was on average 7?years older than respective chronological age (p = 1.8 × 10-8). In age-matched analyses, tumor breast tissue appeared 12 and 13?years older in DNAm age than adjacent-normal and normal breast tissue (p = 4.0 × 10-6 and 1.0 × 10-6, respectively). Both HER2+ and hormone-receptor positive subtypes demonstrated significant acceleration in DNAm ages (p = 0.04 and 3.8 × 10-6, respectively), while no apparent DNAm age acceleration was observed for triple-negative breast tumors. We observed a non-linear pattern of epigenetic age acceleration with breast tumor grade. In addition, early-staged tumors showed a positive epigenetic age acceleration (p = 0.003) while late-staged tumors exhibited a non-significant negative epigenetic age acceleration (p = 0.10). CONCLUSIONS:The intended applications for this model are wide-spread and have been shown to provide biologically meaningful results for cancer-related aging effects in breast tumor tissue. Future studies are warranted to explore whether breast tissue-specific epigenetic age acceleration is predictive of breast cancer development, treatment response, and survival as well as the clinical utility of whether this model can be extended to blood samples.
Project description:Differential DNA methylation is a potential marker of breast cancer risk. Few studies have investigated DNA methylation changes in normal breast tissue and were largely confounded by cancer field effects. To detect methylation changes in normal breast epithelium that are causally associated with breast cancer occurrence, we used a nested case-control study design based on a prospective cohort of patients diagnosed with a primary invasive hormone receptor-positive breast cancer. Twenty patients diagnosed with a contralateral breast cancer (CBC) were matched (1:1) with 20 patients who did not develop a CBC on relevant risk factors. Differentially methylated Cytosine-phosphate-Guanines (CpGs) and regions in normal breast epithelium were identified using an epigenome-wide DNA methylation assay and robust linear regressions. Analyses were replicated in two independent sets of normal breast tissue and blood. We identified 7315 CpGs (FDR < 0.05), 52 passing strict Bonferroni correction (p < 1.22 × 10-7) and 43 mapping to known genes involved in metabolic diseases with significant enrichment (p < 0.01) of pathways involving fatty acids metabolic processes. Four differentially methylated genes were detected in both site-specific and regions analyses (LHX2, TFAP2B, JAKMIP1, SEPT9), and three genes overlapped all three datasets (POM121L2, KCNQ1, CLEC4C). Once validated, the seven differentially methylated genes distinguishing women who developed and who did not develop a sporadic breast cancer could be used to enhance breast cancer risk-stratification, and allow implementation of targeted screening and preventive strategies that would ultimately improve breast cancer prognosis.