Project description:Isochorismate synthase (ICS) is a crucial enzyme in the salicylic acid (SA) synthesis pathway. The full-length complementary DNA (cDNA) sequence of the ICS gene was isolated from Artemisia annua L. The gene, named AaICS1, contained a 1710-bp open reading frame, which encoded a protein with 570 amino acids. Bioinformatics and comparative study revealed that the polypeptide protein of AaICS1 had high homology with ICSs from other plant species. Southern blot analysis suggested that AaICS1 might be a single-copy gene. Analysis of the 1470-bp promoter of AaICS1 identified distinct cis-acting regulatory elements, including TC-rich repeats, MYB binding site (MBS), and TCA-elements. An analysis of AaICS1 transcript levels in multifarious tissues of A. annua using quantitative real-time polymerase chain reaction (qRT-PCR) showed that old leaves had the highest transcription levels. AaICS1 was up-regulated under wounding, drought, salinity, and SA treatments. This was corroborated by the presence of the predicted cis-acting elements in the promoter region of AaICS1. Overexpressing transgenic plants and RNA interference transgenic lines of AaICS1 were generated and their expression was compared. High-performance liquid chromatography (HPLC) results from leaf tissue of transgenic A. annua showed an increase in artemisinin content in the overexpressing plants. These results confirm that AaICS1 is involved in the isochorismate pathway.
Project description:Plants synthesize a great variety of isoprenoid products that are required not only for normal growth and development but also for their adaptive responses to environmental challenges. However, despite the remarkable diversity in the structure and function of plant isoprenoids, they all originate from a single metabolic precursor, mevalonic acid. The synthesis of mevalonic acid is catalysed by the enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG- CoA reductase). The analysis of the amino acid sequence of HMG-CoA reductase from Artemisia annua L. plant showed that it belongs to class I HMG-CoA reductase family. The three dimensional structure of HMG-CoA reductase of Artemisia annua has been generated from amino acid sequence using homology modelling with backbone structure of human HMG-CoA reductase as template. The model was generated using the SWISS MODEL SERVER. The generated 3-D structure of HMG-CoA reductase was evaluated at various web interfaced servers to checks the stereo interfaced quality of the structure in terms of bonds, bond angles, dihedral angles and non-bonded atom-atom distances, structural as well as functional domains etc. The generated model was visualized using the RASMOL. Structural analysis of HMG-CoA reductase from Artemisia annua L. plant hypothesize that the N and C-terminals are positioned in cytosol by the two membrane spanning helices and the C-terminals domain shows similarity to the human HMG-CoA reductase enzyme indicating that they both had potential catalytic similarities.
Project description:Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, ?-myrcene. Although both Mg(2+) and Mn(2+) were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn(2+) for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.
Project description:BackgroundGlandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species.ResultsWe present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by approximately 30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes.ConclusionThe presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua.