Project description:This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.
Project description:Emerging reports of SARS-CoV-2 breakthrough infections entail methodical genomic surveillance for determining the efficacy of vaccines. This study elaborates genomic analysis of isolates from breakthrough infections following vaccination with AZD1222/Covishield and BBV152/Covaxin. Variants of concern B.1.617.2 and B.1.1.7 responsible for cases surge in April-May 2021 in Delhi, were the predominant lineages among breakthrough infections.
Project description:Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing. Viral sequencing revealed variants of likely clinical importance, including E484K in 1 woman and three mutations (T95I, del142-144, and D614G) in both. These observations indicate a potential risk of illness after successful vaccination and subsequent infection with variant virus, and they provide support for continued efforts to prevent and diagnose infection and to characterize variants in vaccinated persons. (Funded by the National Institutes of Health and others.).
Project description:BackgroundData on breakthrough SARS-CoV-2 Delta variant infections in vaccinated individuals are limited.MethodsWe studied breakthrough infections among Oxford-AstraZeneca vaccinated healthcare workers in an infectious diseases hospital in Vietnam. We collected demographic and clinical data alongside serial PCR testing, measurement of SARS-CoV-2 antibodies, and viral whole-genome sequencing.FindingsBetween 11th-25th June 2021 (7-8 weeks after the second dose), 69 staff tested positive for SARS-CoV-2. 62 participated in the study. Most were asymptomatic or mildly symptomatic and all recovered. Twenty-two complete-genome sequences were obtained; all were Delta variant and were phylogenetically distinct from contemporary viruses obtained from the community or from hospital patients admitted prior to the outbreak. Viral loads inferred from Ct values were 251 times higher than in cases infected with the original strain in March/April 2020. Median time from diagnosis to negative PCR was 21 days (range 8-33). Neutralizing antibodies (expressed as percentage of inhibition) measured after the second vaccine dose, or at diagnosis, were lower in cases than in uninfected, fully vaccinated controls (median (IQR): 69.4 (50.7-89.1) vs. 91.3 (79.6-94.9), p=0.005 and 59.4 (32.5-73.1) vs. 91.1 (77.3-94.2), p=0.002). There was no correlation between vaccine-induced neutralizing antibody levels and peak viral loads or the development of symptoms.InterpretationBreakthrough Delta variant infections following Oxford-AstraZeneca vaccination may cause asymptomatic or mild disease, but are associated with high viral loads, prolonged PCR positivity and low levels of vaccine-induced neutralizing antibodies. Epidemiological and sequence data suggested ongoing transmission had occurred between fully vaccinated individuals.FundingWellcome and NIH/NIAID.
Project description:We evaluated the clinical protection of BNT162b2 mRNA vaccine in healthcare workers (HCWs) and how COVID-19 manifestations and contagiousness change as the time since first dose increases. A matched (1:2 ratio) parallel cohort study was performed. During the first three months of vaccination campaign, HCWs of the entire health district ASL Città di Torino (Turin, Italy) were classified according to SARS-CoV-2-positivity in respect of the vaccination schedule: post-first-dose (fHCWs, <12 days), partially (PHCWs, ≥12 from first dose to ≤7 days after the second), and totally vaccinated (THCWs, ≥8 days after the second dose). Age-/sex-matched unvaccinated controls were randomly selected from all the SARS-CoV-2-positivity detected in the same district and period. Previous infections were excluded. Clinical and virologic data (ORF1ab gene cycle threshold values, Ct) were recorded. In total, 6800 HCWs received at least one dose, and 55 tested positive subsequently: 20 fHCWs, 25 PHCWs, 10 THCWs. Furthermore, 21.8% of breakthrough infections were in male, with a median age of 49 years (32-56), and 51.4% occurred while SARS-CoV-2 B.1.1.7 variant was predominant. The incident relative risk was 0.13 (0.12-0.15) for PHCWs and 0.06 (0.05-0.07) for THCWs. Compared to controls (n = 110), no difference was observed in fHCWs, while PHCWs and THCWs showed higher prevalence of asymptomatic infections, fewer signs/symptoms with a milder systemic involvement, and significantly higher Ct values (PHCWs 30.3 (24.1-35.5) vs. 22.3 (19.6-30.6), p = 0.023; THCWs 35.0 (31.3-35.9) vs. 22.5 (18.2-30.6), p = 0.024). Duration of symptoms was also shorter in THCWs (5 days (3-6) vs. 9 (7-14), p = 0.028). A linear increase of 3.81 points in Ct values was observed across the groups by vaccination status (p = 0.001) after adjusting for age, sex, comorbidities, and time between COVID-19 onset and swab collection. BNT162b2 decreased the risk of PCR-confirmed infections and severe disease, and was associated with a virologic picture of lesser epidemiologic concern as soon as 12 days after the first vaccine dose.
Project description:SARS-CoV-2 breakthrough infections in vaccinated individuals and in those who had a prior infection have been observed globally, but the transmission potential of these infections is unknown. The RT-qPCR cycle threshold (Ct) value is inversely correlated with viral load and culturable virus. Here, we investigate differences in RT-qPCR Ct values across Qatar's national cohorts of primary infections, reinfections, BNT162b2 (Pfizer-BioNTech) breakthrough infections, and mRNA-1273 (Moderna) breakthrough infections. Our matched-cohort analyses of the randomly diagnosed infections show higher mean Ct value in all cohorts of breakthrough infections compared to the cohort of primary infections in unvaccinated individuals. The Ct value is 1.3 (95% CI: 0.9-1.8) cycles higher for BNT162b2 breakthrough infections, 3.2 (95% CI: 1.9-4.5) cycles higher for mRNA-1273 breakthrough infections, and 4.0 (95% CI: 3.5-4.5) cycles higher for reinfections in unvaccinated individuals. Since Ct value correlates inversely with SARS-CoV-2 infectiousness, these differences imply that vaccine breakthrough infections and reinfections are less infectious than primary infections in unvaccinated individuals. Public health benefits of vaccination may have been underestimated, as COVID-19 vaccines not only protect against acquisition of infection, but also appear to protect against transmission of infection.
Project description:Background: An unprecedented coronavirus disease 2019 (COVID-19) wave occurred in China between December 2022 and January 2023, challenging the efficacy of the primary series of COVID-19 vaccines. The attitudes toward future COVID-19 booster vaccines (CBV) after the massive breakthrough infection among healthcare workers remain unknown. This study aimed to explore the prevalence and determinants of future CBV refusal after the unprecedented COVID-19 wave among healthcare workers. Methods: Between 9 and 19 February 2023, a cross-sectional nationwide online survey was conducted using a self-administered questionnaire vaccine among healthcare workers in China. Sociodemographics, profession, presence of chronic medical conditions, previous COVID-19 infection, attitudes towards future CBV, and reasons for future CBV refusal were collected. We estimated odds ratio [OR] with 95% confidence interval [CI] using a multivariable logistic regression model to explore the factors associated with future CBV refusal. Results: Among the 1618 participants who completed the survey, 1511 respondents with two or more doses of COVID-19 vaccines were analyzed. A total of 648 (41.8%) of respondents were unwilling to receive a future CBV. Multivariable logistic regression analysis revealed the association of CBV refusal with profession (vs. other staff, physician-adjusted OR 1.17, 95%CI 0.79-1.72, nurse-adjusted OR 1.88, 95%CI 1.24-2.85, p = 0.008), history of allergy (adjusted OR 1.72, 95%CI 1.05-2.83, p = 0.032), a lower self-perceived risk of future COVID-19 infection (p < 0.001), and a lower belief in CBV effectiveness (p = 0.014), safety (p < 0.001), and necessities for healthcare workers and the public (p < 0.001, respectively). Conclusions: Our findings highlight that a considerable proportion of healthcare workers were against a future booster dose after an unprecedented COVID-19 wave. Self-perception of future COVID-19 risk, and potential harm or doubtful efficacy of vaccines are the main determinants. Our findings may help public health authorities to establish future COVID-19 vaccination programs.
Project description:IgG antibodies elicited in response to SARS-CoV-2 are critical in determining the protection achieved through vaccination. The present longitudinal study aims to assess the immune response generated through AZD1222 & BBV-152 vaccination among health care workers (HCWs) in a selected hospital. Serum IgG levels were measured approximately at 1.5 months and 6 months after the first and second vaccination. The final assessment was done 12 months after the first vaccination to analyse the sustained antibody levels. Results showed a progressive increase in antibody titres as a function of time. 26 HCWs in all had SARS-CoV-2 breakthrough infection, but their antibody titres were not significantly higher compared to COVID-19 naïve individuals. However, a comparative analysis showed considerably higher antibody titre in those who received the AZD1222 vaccine among this cohort. AZD1222 vaccination was significantly associated with seropositivity in the first and second assessments. Female HCWs showed significantly higher seropositivity, and participants above 60 years showed considerably reduced antibody titre in the first assessment. However, the final assessment showed no association with these variables, with 97.1 % of participants reporting to be seropositive. The results indicate good antibody response and potential protection against SARS CoV-2.
Project description:The short-term effectiveness of a two-dose regimen of the BioNTech/Pfizer mRNA BNT162b2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine was widely demonstrated. However, long term effectiveness is still unknown. Leveraging the centralized computerized database of Maccabi Healthcare Services (MHS), we assessed the correlation between time-from-vaccine and incidence of breakthrough infection between June 1 and July 27, the date of analysis. After controlling for potential confounders as age and comorbidities, we found a significant 1.51 fold (95% CI, 1.38-1.66) increased risk for infection for early vaccinees compared to those vaccinated later that was similar across all ages groups. The increased risk reached 2.26- fold (95% CI, 1.80-3.01) when comparing those who were vaccinated in January to those vaccinated in April. This preliminary finding of vaccine waning as a factor of time from vaccince should prompt further investigations into long-term protection against different strains.