Project description:The purpose of this study was to identify miRNAs that were dysregulated after the onset of COVID-19 and thus potentially be used for risk stratification (i.e., mortality). Therefore, we conducted a multi-center, retrospective longitudinal cohort study enrolling 142 patients with laboratory-confirmed SARS-CoV-2 infection who presented to two Canadian hospitals from May 2020 – December 2020 along with a cohort of 27 SARS-CoV-2 patients with mild upper respiratory tract symptoms and 69 SARS-CoV-2-negative patients from the ICU. Blood was biobanked from SARS-CoV-2 positive patients in the emergency department (mild), ward (moderate) or intensive care unit (severe). Assessment of miRNA expression and co-regulatory network generation revealed significant transcriptome dyregulation in pateints with severe COVID-19 that was largely different from SARS-CoV-2 negative patients in the ICU.
Project description:Coronavirus disease 2019 (COVID-19) originated in the city of Wuhan, Hubei Province, Central China, and has spread quickly to 72 countries to date. COVID-19 is caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [previously provisionally known as 2019 novel coronavirus (2019-nCoV)]. At present, the newly identified SARS-CoV-2 has caused a large number of deaths with tens of thousands of confirmed cases worldwide, posing a serious threat to public health. However, there are no clinically approved vaccines or specific therapeutic drugs available for COVID-19. Intensive research on the newly emerged SARS-CoV-2 is urgently needed to elucidate the pathogenic mechanisms and epidemiological characteristics and to identify potential drug targets, which will contribute to the development of effective prevention and treatment strategies. Hence, this review will focus on recent progress regarding the structure of SARS-CoV-2 and the characteristics of COVID-19, such as the aetiology, pathogenesis and epidemiological characteristics.
Project description:As coronavirus disease 2019 (COVID-19) spreads across the world, the intensive care unit (ICU) community must prepare for the challenges associated with this pandemic. Streamlining of workflows for rapid diagnosis and isolation, clinical management, and infection prevention will matter not only to patients with COVID-19, but also to health-care workers and other patients who are at risk from nosocomial transmission. Management of acute respiratory failure and haemodynamics is key. ICU practitioners, hospital administrators, governments, and policy makers must prepare for a substantial increase in critical care bed capacity, with a focus not just on infrastructure and supplies, but also on staff management. Critical care triage to allow the rationing of scarce ICU resources might be needed. Researchers must address unanswered questions, including the role of repurposed and experimental therapies. Collaboration at the local, regional, national, and international level offers the best chance of survival for the critically ill.
Project description:SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.
Project description:Coronavirus disease 2019 (COVID-19) is a type of viral pneumonia with an uncommon outbreak in Wuhan, China, in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). SARS-CoV-2 is extremely contagious and has resulted in a fast pandemic of COVID-19. Currently, COVID-19 is on the rise around the world, and it poses a severe threat to public health around the world. This review provides an overview about the COVID-19 virus to increase public awareness and understanding of the virus and its consequences in terms of history, epidemiology, structure, genome, clinical symptoms, diagnosis, prevention, and treatment.
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:COVID-19 disease affects all ages, but severe cases of the disease and mortality are very rarely seen among children. In most cases, they acquire the virus from their parents or from an another infected person. The exact reasons why the disease has a milder course in children is unknown but high numbers of Angiotensin Converting Enzyme-2 (ACE2) receptors, underdeveloped immune responses, cross-reaction with other viruses, protective effect of fetal hemoglobin and fewer outdoor activities as well as journeys, and nonexposure to air pollution, and smoking. Although many cases are asymptomatic, they can still shed the virus. Materno-fetal vertical transmission has not been shown so far. In symptomatic cases, clinical findings include fever and respiratory symptoms, followed by diarrhea and vomiting. There are signs indicating a possible association between Kawasaki disease and COVID-19. Clinical findings and diagnostic procedures in newborns, and older children are similar. Supportive therapy is essential and antiviral agents are not required in most cases. During cytokine storm, anti-inflammatory treatments may be tried. There is no evidence for transmission through breastmilk; therefore infected mothers should breastfeed their infants by taking all precautions. Routine immunizations of children should not be deferred during COVID-19 outbreak period. Psychological support for children who need to stay at home and for healthcare personnel should be provided.
Project description:The purpose of this study was to identify mRNAs that were dysregulated after exposure to COVID-19 patient plasma and thus possibly contribute to vascular inflammation. Therefore, we conducted a multi-center, retrospective longitudinal cohort study enrolling 142 patients with laboratory-confirmed SARS-CoV-2 infection who presented to two Canadian hospitals from May 2020 – December 2020 along with a cohort of 27 SARS-CoV-2 patients with mild upper respiratory tract symptoms and 69 SARS-CoV-2-negative patients from the ICU. Blood was biobanked from SARS-CoV-2 positive patients in the emergency department (mild), ward (moderate) or intensive care unit (severe). Assessment of gene regulatory networks, gene set enrichment analysis, and in vitro permeability follow-up suggested functional reductions in junctional protein expression. Following this, confirmed critical reductions in VE-cadherin and ZO-1 which may drive pathology in moderate and severe cases of COVID-19.
Project description:The current coronavirus disease 2019 (COVID-19) pneumonia pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally at an accelerated rate, with a basic reproduction number (R0) of 2-2.5, indicating that 2-3 persons will be infected from an index patient. A serious public health emergency, it is particularly deadly in vulnerable populations and communities in which healthcare providers are insufficiently prepared to manage the infection. As of March 16, 2020, there are more than 180,000 confirmed cases of COVID-19 worldwide, with more than 7000 related deaths. The SARS-CoV-2 virus has been isolated from asymptomatic individuals, and affected patients continue to be infectious 2 weeks after cessation of symptoms. The substantial morbidity and socioeconomic impact have necessitated drastic measures across all continents, including nationwide lockdowns and border closures. Pregnant women and their fetuses represent a high-risk population during infectious disease outbreaks. To date, the outcomes of 55 pregnant women infected with COVID-19 and 46 neonates have been reported in the literature, with no definite evidence of vertical transmission. Physiological and mechanical changes in pregnancy increase susceptibility to infections in general, particularly when the cardiorespiratory system is affected, and encourage rapid progression to respiratory failure in the gravida. Furthermore, the pregnancy bias toward T-helper 2 (Th2) system dominance, which protects the fetus, leaves the mother vulnerable to viral infections, which are more effectively contained by the Th1 system. These unique challenges mandate an integrated approach to pregnancies affected by SARS-CoV-2. Here we present a review of COVID-19 in pregnancy, bringing together the various factors integral to the understanding of pathophysiology and susceptibility, diagnostic challenges with real-time reverse transcription polymerase chain reaction (RT-PCR) assays, therapeutic controversies, intrauterine transmission, and maternal-fetal complications. We discuss the latest options in antiviral therapy and vaccine development, including the novel use of chloroquine in the management of COVID-19. Fetal surveillance, in view of the predisposition to growth restriction and special considerations during labor and delivery, is addressed. In addition, we focus on keeping frontline obstetric care providers safe while continuing to provide essential services. Our clinical service model is built around the principles of workplace segregation, responsible social distancing, containment of cross-infection to healthcare providers, judicious use of personal protective equipment, and telemedicine. Our aim is to share a framework that can be adopted by tertiary maternity units managing pregnant women in the flux of a pandemic while maintaining the safety of the patient and healthcare provider at its core.
Project description:The coronavirus disease-2019 (COVID-19) has become a global pandemic. It has spread to more than 100 countries, and more than 1 million cases have been confirmed. Although coronavirus causes severe respiratory infections in humans, accumulating data have demonstrated cardiac complications and poor outcome in patients with COVID-19. A large percent of patients have underlying cardiovascular disease, and they are at a high risk of developing cardiac complications. The basics of the virus, the clinical manifestations, and the possible mechanisms of cardiac complications in patients with COVID-19 are reviewed. Before an effective vaccine or medicine is available, supportive therapy and identifying patients who are at high risk of cardiac complications are important.