Project description:Social media dominate today's information ecosystem and provide valuable information for social research. Market researchers, social scientists, policymakers, government entities, public health researchers, and practitioners recognize the potential for social data to inspire innovation, support products and services, characterize public opinion, and guide decisions. The appeal of mining these rich datasets is clear. However, there is potential risk of data misuse, underscoring an equally huge and fundamental flaw in the research: there are no procedural standards and little transparency. Transparency across the processes of collecting and analyzing social media data is often limited due to proprietary algorithms. Spurious findings and biases introduced by artificial intelligence (AI) demonstrate the challenges this lack of transparency poses for research. Social media research remains a virtual "wild west," with no clear standards for reporting regarding data retrieval, preprocessing steps, analytic methods, or interpretation. Use of emerging generative AI technologies to augment social media analytics can undermine validity and replicability of findings, potentially turning this research into a "black box" enterprise. Clear guidance for social media analyses and reporting is needed to assure the quality of the resulting research. In this article, we propose criteria for evaluating the quality of studies using social media data, grounded in established scientific practice. We offer clear documentation guidelines to ensure that social data are used properly and transparently in research and applications. A checklist of disclosure elements to meet minimal reporting standards is proposed. These criteria will make it possible for scholars and practitioners to assess the quality, credibility, and comparability of research findings using digital data.
Project description:Trustworthy medical AI requires transparency about the development and testing of underlying algorithms to identify biases and communicate potential risks of harm. Abundant guidance exists on how to achieve transparency for medical AI products, but it is unclear whether publicly available information adequately informs about their risks. To assess this, we retrieved public documentation on the 14 available CE-certified AI-based radiology products of the II b risk category in the EU from vendor websites, scientific publications, and the European EUDAMED database. Using a self-designed survey, we reported on their development, validation, ethical considerations, and deployment caveats, according to trustworthy AI guidelines. We scored each question with either 0, 0.5, or 1, to rate if the required information was "unavailable", "partially available," or "fully available." The transparency of each product was calculated relative to all 55 questions. Transparency scores ranged from 6.4% to 60.9%, with a median of 29.1%. Major transparency gaps included missing documentation on training data, ethical considerations, and limitations for deployment. Ethical aspects like consent, safety monitoring, and GDPR-compliance were rarely documented. Furthermore, deployment caveats for different demographics and medical settings were scarce. In conclusion, public documentation of authorized medical AI products in Europe lacks sufficient public transparency to inform about safety and risks. We call on lawmakers and regulators to establish legally mandated requirements for public and substantive transparency to fulfill the promise of trustworthy AI for health.
Project description:ImportanceClinical artificial intelligence (AI) algorithms have the potential to improve clinical care, but fair, generalizable algorithms depend on the clinical data on which they are trained and tested.ObjectiveTo assess whether data sets used for training diagnostic AI algorithms addressing skin disease are adequately described and to identify potential sources of bias in these data sets.Data sourcesIn this scoping review, PubMed was used to search for peer-reviewed research articles published between January 1, 2015, and November 1, 2020, with the following paired search terms: deep learning and dermatology, artificial intelligence and dermatology, deep learning and dermatologist, and artificial intelligence and dermatologist.Study selectionStudies that developed or tested an existing deep learning algorithm for triage, diagnosis, or monitoring using clinical or dermoscopic images of skin disease were selected, and the articles were independently reviewed by 2 investigators to verify that they met selection criteria.Consensus processData set audit criteria were determined by consensus of all authors after reviewing existing literature to highlight data set transparency and sources of bias.ResultsA total of 70 unique studies were included. Among these studies, 1 065 291 images were used to develop or test AI algorithms, of which only 257 372 (24.2%) were publicly available. Only 14 studies (20.0%) included descriptions of patient ethnicity or race in at least 1 data set used. Only 7 studies (10.0%) included any information about skin tone in at least 1 data set used. Thirty-six of the 56 studies developing new AI algorithms for cutaneous malignant neoplasms (64.3%) met the gold standard criteria for disease labeling. Public data sets were cited more often than private data sets, suggesting that public data sets contribute more to new development and benchmarks.Conclusions and relevanceThis scoping review identified 3 issues in data sets that are used to develop and test clinical AI algorithms for skin disease that should be addressed before clinical translation: (1) sparsity of data set characterization and lack of transparency, (2) nonstandard and unverified disease labels, and (3) inability to fully assess patient diversity used for algorithm development and testing.
Project description:When developing artificial intelligence (AI) software for applications in radiology, the underlying research must be transferable to other real-world problems. To verify to what degree this is true, we reviewed research on AI algorithms for computed tomography of the head. A systematic review was conducted according to the preferred reporting items for systematic reviews and meta-analyses. We identified 83 articles and analyzed them in terms of transparency of data and code, pre-processing, type of algorithm, architecture, hyperparameter, performance measure, and balancing of dataset in relation to epidemiology. We also classified all articles by their main functionality (classification, detection, segmentation, prediction, triage, image reconstruction, image registration, fusion of imaging modalities). We found that only a minority of authors provided open source code (10.15%, n 0 7), making the replication of results difficult. Convolutional neural networks were predominantly used (32.61%, n = 15), whereas hyperparameters were less frequently reported (32.61%, n = 15). Data sets were mostly from single center sources (84.05%, n = 58), increasing the susceptibility of the models to bias, which increases the error rate of the models. The prevalence of brain lesions in the training (0.49 ± 0.30) and testing (0.45 ± 0.29) datasets differed from real-world epidemiology (0.21 ± 0.28), which may overestimate performances. This review highlights the need for open source code, external validation, and consideration of disease prevalence.
Project description:IntroductionWe aimed to assess the reproducibility of empirical research by determining the availability of components required for replication of a study, including materials, raw data, analysis scripts, protocols, and preregistration.MethodsWe used the National Library of Medicine catalog to identify MEDLINE-indexed emergency medicine (EM) journals. Thirty journals met the inclusion criteria. From January 1, 2014-December 31, 2018, 300 publications were randomly sampled using a PubMed search. Additionally, we included four high-impact general medicine journals, which added 106 publications. Two investigators were blinded for independent extraction. Extracted data included statements regarding the availability of materials, data, analysis scripts, protocols, and registration.ResultsAfter the search, we found 25,473 articles, from which we randomly selected 300. Of the 300, only 287 articles met the inclusion criteria. Additionally, we added 106 publications from high-impact journals of which 77 met the inclusion criteria. Together, 364 publications were included, of which 212 articles contained empirical data to analyze. Of the eligible empirical articles, 2.49%, (95% confidence interval [CI], 0.33% to 4.64%] provided a material statement, 9.91% (95% CI, 5.88% to 13.93%) provided a data statement, 0 provided access to analysis scripts, 25.94% (95% CI, 20.04% to 31.84%) linked the protocol, and 39.15% (95% CI, 32.58% to 45.72%) were preregistered.ConclusionStudies in EM lack indicators required for reproducibility. The majority of studies fail to report factors needed to reproduce research to ensure credibility. Thus, an intervention is required and can be achieved through the collaboration of researchers, peer reviewers, funding agencies, and journals.
Project description:We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Project description:AimsAs one of the most fundamental questions in modern science, "what causes schizophrenia (SZ)" remains a profound mystery due to the absence of objective gene markers. The reproducibility of the gene signatures identified by independent studies is found to be extremely low due to the incapability of available feature selection methods and the lack of measurement on validating signatures' robustness. These irreproducible results have significantly limited our understanding of the etiology of SZ.MethodsIn this study, a new feature selection strategy was developed, and a comprehensive analysis was then conducted to ensure a reliable signature discovery. Particularly, the new strategy (a) combined multiple randomized sampling with consensus scoring and (b) assessed gene ranking consistency among different datasets, and a comprehensive analysis among nine independent studies was conducted.ResultsBased on a first-ever evaluation of methods' reproducibility that was cross-validated by nine independent studies, the newly developed strategy was found to be superior to the traditional ones. As a result, 33 genes were consistently identified from multiple datasets by the new strategy as differentially expressed, which might facilitate our understanding of the mechanism underlying the etiology of SZ.ConclusionA new strategy capable of enhancing the reproducibility of feature selection in current SZ research was successfully constructed and validated. A group of candidate genes identified in this study should be considered as great potential for revealing the etiology of SZ.
Project description:Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with B7 proteins CD80 and CD86. CTLA-4 is the first immune checkpoint targeted with a monoclonal antibody inhibitor. Checkpoint inhibitors have generated durable responses in many cancer patients, representing a revolutionary milestone in cancer immunotherapy. However, therapeutic efficacy is limited to a small portion of patients, and immune-related adverse events are noteworthy, especially for monoclonal antibodies directed against CTLA-4. Previously, small molecules have been developed to impair the CTLA-4: CD80 interaction; however, they directly targeted CD80 and not CTLA-4. In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to target CTLA-4. We validated primary hits with biochemical, biophysical, immunological, and experimental animal assays. We then optimized lead compounds and obtained inhibitors with an inhibitory concentration of 1 micromole in disrupting the interaction between CTLA-4 and CD80. Unlike ipilimumab, these small molecules did not degrade CTLA-4. Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. This project supports an AI-based framework in designing small molecules targeting immune checkpoints for cancer therapy.
Project description:BackgroundReproducibility is the hallmark of good science. Maintaining a high degree of transparency in scientific reporting is essential not just for gaining trust and credibility within the scientific community but also for facilitating the development of new ideas. Sharing data and computer code associated with publications is becoming increasingly common, motivated partly in response to data deposition requirements from journals and mandates from funders. Despite this increase in transparency, it is still difficult to reproduce or build upon the findings of most scientific publications without access to a more complete workflow.FindingsVersion control systems (VCS), which have long been used to maintain code repositories in the software industry, are now finding new applications in science. One such open source VCS, Git, provides a lightweight yet robust framework that is ideal for managing the full suite of research outputs such as datasets, statistical code, figures, lab notes, and manuscripts. For individual researchers, Git provides a powerful way to track and compare versions, retrace errors, explore new approaches in a structured manner, while maintaining a full audit trail. For larger collaborative efforts, Git and Git hosting services make it possible for everyone to work asynchronously and merge their contributions at any time, all the while maintaining a complete authorship trail. In this paper I provide an overview of Git along with use-cases that highlight how this tool can be leveraged to make science more reproducible and transparent, foster new collaborations, and support novel uses.
Project description:Accumulating evidence suggests that many findings in psychological science and cognitive neuroscience may prove difficult to reproduce; statistical power in brain imaging studies is low and has not improved recently; software errors in analysis tools are common and can go undetected for many years; and, a few large-scale studies notwithstanding, open sharing of data, code, and materials remain the rare exception. At the same time, there is a renewed focus on reproducibility, transparency, and openness as essential core values in cognitive neuroscience. The emergence and rapid growth of data archives, meta-analytic tools, software pipelines, and research groups devoted to improved methodology reflect this new sensibility. We review evidence that the field has begun to embrace new open research practices and illustrate how these can begin to address problems of reproducibility, statistical power, and transparency in ways that will ultimately accelerate discovery.