Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones.
Ontology highlight
ABSTRACT: We report the development of a photocatalytic strategy for the synthesis of β-functionalized unsymmetrical 1,4-, 1-6 and 1,7-diketones from aroyl chlorides and unactivated alkenes at room temperature. The mild reaction conditions not only tolerate a wide range of functional groups and structural moieties, but also enable migration of a variety of distal groups including (hetero)arenes, nitrile, aldehyde, oxime-derivative, and alkene. The efficiency of chirality transfer, factors that control the distal-group migration, and synthesis of carbo- and heterocycles from the diketones are also described. Mechanistic studies suggest a reaction pathway involving a photocatalytic radical aroylation of unactivated alkenes followed by a distal-group migration, oxidation, and deprotonation to afford the desired diketones.
SUBMITTER: Sarkar S
PROVIDER: S-EPMC8147874 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA