Unknown

Dataset Information

0

Iridium-Catalyzed Enantioselective and Diastereoselective Hydrogenation of 1,3-Disubstituted Isoquinolines.


ABSTRACT: The development of a general method utilizing a hydroxymethyl directing group for asymmetric hydrogenation of 1,3-disubstituted isoquinolines to provide chiral 1,2,3,4-tetrahydroisoquinolines is reported. The reaction, which utilizes [Ir(cod)Cl]2 and a commercially available chiral xyliphos ligand, proceeds in good yield with high levels of enantioselectivity and diastereo-selectivity (up to 95% ee and >20:1 dr) on a range of differentially substituted isoquinolines. Directing group studies demonstrate that the hydroxymethyl functional group at the C1-position is more efficient at enabling hydrogenation than other substituents, although high levels of enantioselectivity were conserved across a variety of polar and non-polar functional groups. By utilizing the generated chiral β-amino alcohol as a functional handle, the synthetic utility is further highlighted via the synthesis of 1,2-fused oxazolidine, oxazolidinone, and morpholinone tetrahydroisoquinolines in one step. Additionally, a non-natural analog of the tetrahydroprotoberberine alkaloids was successfully synthesized.

SUBMITTER: Kim AN 

PROVIDER: S-EPMC8152574 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5084810 | biostudies-other
| S-EPMC7884017 | biostudies-literature
| S-EPMC4969080 | biostudies-literature
| S-EPMC8456900 | biostudies-literature
| S-EPMC6748664 | biostudies-literature
| S-EPMC2746482 | biostudies-literature