Unknown

Dataset Information

0

Chest X-ray Classification Using Deep Learning for Automated COVID-19 Screening.


ABSTRACT: In today's world, we find ourselves struggling to fight one of the worst pandemics in the history of humanity known as COVID-2019 caused by a coronavirus. When the virus reaches the lungs, we observe ground-glass opacity in the chest X-ray due to fibrosis in the lungs. Due to the significant differences between X-ray images of an infected and non-infected person, artificial intelligence techniques can be used to identify the presence and severity of the infection. We propose a classification model that can analyze the chest X-rays and help in the accurate diagnosis of COVID-19. Our methodology classifies the chest X-rays into four classes viz. normal, pneumonia, tuberculosis (TB), and COVID-19. Further, the X-rays indicating COVID-19 are classified on a severity-basis into mild, medium, and severe. The deep learning model used for the classification of pneumonia, TB, and normal is VGG-16 with a test accuracy of 95.9 %. For the segregation of normal pneumonia and COVID-19, the DenseNet-161 was used with a test accuracy of 98.9 %, whereas the ResNet-18 worked best for severity classification achieving a test accuracy up to 76 %. Our approach allows mass screening of the people using X-rays as a primary validation for COVID-19.

Supplementary information

The online version contains supplementary material available at 10.1007/s42979-021-00695-5.

SUBMITTER: Shelke A 

PROVIDER: S-EPMC8152712 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7885941 | biostudies-literature
| S-EPMC7372265 | biostudies-literature
| S-EPMC8455169 | biostudies-literature
| S-EPMC9891971 | biostudies-literature
| S-EPMC7837255 | biostudies-literature
| S-EPMC9046709 | biostudies-literature
| S-EPMC9929417 | biostudies-literature
| S-EPMC9497601 | biostudies-literature
| S-EPMC11007525 | biostudies-literature
| S-EPMC8330146 | biostudies-literature