ABSTRACT: Sulfate-reducing bacteria (SRB), such as Desulfobacter postgatei are found in oil wells. However, they lead to the release of hydrogen sulfide. This in turn leads to the iron sulfide scale formation (pyrite). ATP sulfurylase is an enzyme present in SRB, which catalyzes the formation of adenylyl sulfate (APS) and inorganic pyrophosphatase (PPi) from ATP and sulfate. This reaction is the first among many in hydrogen sulfide production by D. postgatei . Consensus scoring using molecular docking and machine learning was used to identify three potential inhibitors of ATP sulfurylase from a database of about 40 million compounds. These selected hits ((S,E)-1-(4-methoxyphenyl)-3-(9-((m-tolylimino)methyl)-9,10-dihydroanthracen-9-yl)pyrrolidine-2,5-dione; methyl 2-[[(1S)-5-cyano-2-imino-1-(4-phenylthiazol-2-yl)-3-azaspiro[5.5]undec-4-en-4-yl]sulfanyl]acetate; and (4S)-4-(3-chloro-4-hydroxy-phenyl)-1-(6-hydroxypyridazin-3-yl)-3-methyl-4,5-dihydropyrazolo[3,4-b]pyridin-6-ol), known as A, B, and C, respectively) all had good binding affinities with ATP sulfurylase and were further analyzed for their toxicological properties. Compound A had the highest docking score. However, based on the physicochemical and toxicological properties, only compound C was predicted to be both safe and effective as a potential inhibitor of ATP sulfurylase, hence the preferred choice. The molecular interactions of compound C revealed favorable interactions with the following residues: LEU213, ASP308, ARG307, TRP347, LEU224, GLN212, MET211, and HIS309.