Network Pharmacology Analysis and Experimental Pharmacology Study Explore the Mechanism of Gambogic Acid against Endometrial Cancer.
Ontology highlight
ABSTRACT: Endometrial cancer (EC) is one of the three most common gynecological cancers in female groups. Gambogic acid (GA), a natural caged xanthone, exerts significantly antitumor effects on many cancers. However, its efficacy on EC and pharmacological mechanism of action remain marginal up to now. This study suggested that GA had significant inhibitory effects on EC in vitro and in vivo, and no toxicity to normal cells or mice. In detail, GA suppressed cell proliferation, induced cell apoptosis, and cell cycle arrest at G0/G1 stage, complied with the network pharmacology analysis, showed that the PI3K/Akt pathways were the most important signaling, and their protein and mRNA expression levels were confirmed by qRT-PCR and Western blot experiments. In all, our study first proved that GA could inhibit cell proliferation, induce cell apoptosis, and cell cycle arrest at G0/G1 stage via the PI3K/Akt pathways, so GA would be a good therapy for EC.
Project description:BackgroundEndometrial cancer (EC) is one of the most common gynaecological malignancies, and its incidence has been rising over the past decade. Tetrandrine, a bisbenzylisoquinoline alkaloid, has been isolated from a vine used in traditional Chinese medicine, Stephania tetrandra. However, the key mechanism of tetrandrine in EC is still unclear.PurposeThis research was designed to predict the molecular mechanisms of tetrandrine against EC based on network pharmacology and to further verify these predictions by in vitro experiments.MethodsThe potential therapeutic targets of tetrandrine against EC were predicted by using public databases. Afterwards, the protein-protein interaction (PPI) network of the common targets was constructed, and the key gene targets were obtained. Biological function and pathway enrichment analyses were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Furthermore, molecular docking and in vitro experiments were carried out to verify the predictions. The cell counting kit‑8 (CCK‑8) assay, Hoechst 33258 staining, flow cytometry analysis, qRT-PCR, Western blot analysis and an immunofluorescence assay were performed.ResultsOur findings identified 111 potential therapeutic targets of tetrandrine against EC. We obtained 7 key gene targets from the PPI network analysis. Furthermore, GO enrichment analysis indicated that these targets were mainly associated with metabolic processes, responses to stimulus, and biological regulation. The KEGG pathway analysis showed that the common targets were mainly distributed in the PI3K/Akt signalling pathway. A potential interaction of tetrandrine with Akt1 was revealed by molecular docking. In addition, in vitro experiments showed that tetrandrine significantly inhibited cell proliferation and induced apoptosis in Ishikawa and HEC-1-B cells in dose- and time-dependent manners. The results also revealed that tetrandrine can downregulate the expression of Bcl-2 and upregulate the expression of Bax at the mRNA level. The mRNA levels of Akt were not significantly different in the various tetrandrine (0, 10 and 20µM) groups. However, Western blot analysis demonstrated that the protein expression ratios of p-Akt/Akt decreased at the protein level. The results were further confirmed by immunofluorescence assays.ConclusionBased on bioinformatic analysis and experimental verification, our findings demonstrated that tetrandrine exerted tumour-suppressive effects on EC by regulating the PI3K/Akt signalling pathway.
Project description:PurposeKanglaite injection (KLTi), made of Coix seed oil, has been shown to be effective in the treatment of numerous cancers. However, the anticancer mechanism requires further exploration. This study aimed to investigate the underlying anticancer mechanisms of KLTi in triple-negative breast cancer (TNBC) cells.MethodsPublic databases were searched for active compounds in KLTi, their potential targets and TNBC-related targets. KLTi's core targets and signaling pathways were determined through compound-target network, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was carried out to predict the binding activity between active ingredients and key targets. In vitro experiments were conducted to further validate the predictions of network pharmacology.ResultsFourteen active components of KLTi were screened from the database. Fifty-three candidate therapeutic targets were selected, and bioinformatics analysis was performed to identify the top two active compounds and three core targets. GO and KEGG enrichment analyses indicated that KLTi exerts therapeutic effects on TNBC through the cell cycle pathway. Molecular docking results showed that the main compounds of KLTi exhibited good binding activity to key target proteins. Results from in vitro experiments showed that KLTi inhibited proliferation and migration of TNBC cell lines 231 and 468, induced apoptosis, blocked cells in the G2/M phase, downregulated the mRNA expression of seven G2/M phase-related genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), and checkpoint kinase 1 (CHEK1), cell division cycle 25A (CDC25A), cell division cycle 25B (CDC25B), maternal embryonic leucine zipper kinase (MELK), and aurora kinase A (AURKA), as well as downregulated CDK1 protein expression and up-regulated protein expression of Phospho-CDK1.ConclusionBy utilizing network pharmacology, molecular docking, and in vitro experiments, KLTi was confirmed to have anti-TNBC effects by arresting cell cycle and inhibiting CDK1 dephosphorylation.
Project description:Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-β signaling pathway. Finally, TGF-β1-induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-β1-induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-β/Smad3 pathway.
Project description:Cervical cancer is the second leading cause of morbidity and mortality in women worldwide. Traditional treatment methods have become limited. Naringenin, a flavonoid abundant in various fruits and herbal medicines, has demonstrated anti-tumor properties among other effects. This research undertook to elucidate the mechanism of naringenin in the context of cervical cancer treatment by leveraging network pharmacology and performing experimental validation. Initial steps involved predicting potential naringenin targets and subsequently screening for overlaps between these targets and those related to cervical cancer, followed by analysis of their interrelationships. Molecular docking was subsequently utilized to verify the binding effect of the central target. Within the framework of network pharmacology, it was discovered that naringenin might possess anti-cancer properties specific to cervical cancer. Following this, the anti-tumor effects of naringenin on Hela cell viability, migration, and invasion were assessed employing CCK-8, transwell, wound healing assays, and western blotting. Experimental data indicated that naringenin attenuates the migration and invasion of Hela cells via downregulation EGFR/PI3K/AKT signaling pathway. Thus, our findings suggest that naringenin has therapeutic impacts on cervical cancer via multiple mechanisms, primarily by inhibiting the migration and invasion through the EGFR/PI3K/AKT/mTOR pathway. This study offers fresh insights for future clinical studies.
Project description:Background and aimPancreatic cancer is one of the most malignant tumors worldwide. Zuojin pills (ZJP), a traditional Chinese medicine (TCM) formula, which can treat a variety of cancers. However, the active compounds present in ZJP and the potential mechanisms through which ZJP acts against pancreatic cancer have not been thoroughly investigated.MethodsData on pancreatic cancer-related genes, bioactive compounds, and potential targets of ZJP were downloaded from public databases. Bioinformatics analysis, including protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, was conducted to identify important components, potential targets, and signaling pathways through which ZJP affects pancreatic cancer. The results of this analysis were verified by in vitro experiments.ResultsThe network pharmacology analysis results showed that 41 compounds and 130 putative target genes of ZJP were associated with anti-pancreatic cancer effects. ZJP may exert its inhibitory effects against pancreatic cancer by acting on key targets such as JUN, TP53, and MAPK1. Moreover, KEGG analysis indicated that the anti-pancreatic cancer effect of ZJP was mediated by multiple pathways, such as the PI3K-AKT, IL-17, TNF, HIF-1, and P53 signaling pathways. Among these, the PI3K-AKT signaling pathway, which included the highest number of enriched genes, may play a more important role in treating pancreatic cancer. The in vitro results showed that ZJP significantly inhibits the cell cycle and cell proliferation through the PI3K/AKT/caspase pathway and that it can induce apoptosis of pancreatic cancer cells, consistent with the results predicted by network pharmacological methods.ConclusionThis study preliminarily investigated the pharmacological effects of ZJP, which appear to be mediated by multiple compounds, targets and pathways, and its potential therapeutic effect on pancreatic cancer. Importantly, our work provides a promising approach for the identification of compounds in TCM and the characterization of therapeutic mechanisms.
Project description:Bushao Tiaozhi Capsule (BSTZC) is a novel drug in China that is used in clinical practice and has significant therapeutic effects on hyperlipidemia (HLP). In our previous study, BSTZC has a good regulatory effect on lipid metabolism of HLP rats. However, its bioactive compounds, potential targets, and underlying mechanism remain largely unclear. We extracted the active ingredients and targets in BSTZC from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature mining. Subsequently, core ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including constructed Drug-Ingredient-Gene symbols-Disease (D-I-G-D), protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the reliability of the core targets was evaluated using in vivo studies. A total of 36 bioactive ingredients and 209 gene targets were identified in BSTZC. The network analysis revealed that quercetin, kaempferol, wogonin, isorhamnetin, baicalein and luteolin may be the core ingredients. The 26 core targets of BSTZC, including IL-6, TNF, VEGFA, and CASP3, were considered potential therapeutic targets. Furthermore, GO and KEGG analyses indicated that the treatment of HLP by BSTZC might be related to lipopolysaccharide, oxidative stress, inflammatory response and cell proliferation, differentiation and apoptosis. The pathway analysis showed enrichment for different pathways like MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic, IL-17 signaling pathway and TNF signaling pathway. In this study, network pharmacology analysis, and experiment verification were combined, and revealed that BSTZC may regulate key inflammatory markers and apoptosis for ameliorating HLP.
Project description:PurposeSanjie Zhentong Capsule (SZC) is gradually becoming widely used in the treatment of endometriosis (EMs) and has demonstrated an excellent curative effect in the clinic. However, the active components and mechanisms of Sanjie Zhentong Capsule (SZC) in the treatment of endometriosis (EMs) remain unclear, and further research is needed to explore the effects of Sanjie Zhentong Capsule (SZC).Materials and methodsFirst, a drug target database of Sanjie Zhentong capsule (SZC) was established by consulting the TCMSP database and related literature. An endometriosis (EMs) disease target database was then established by consulting the GeneCards, OMIM and Drug Bank databases. The overlapping genes of SZC and EMs were determined, and protein-protein interactions (PPIs), gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses were performed to predict the potential therapeutic mechanisms. Molecular docking was used to observe whether the key active ingredients and targets predicted by network pharmacology had good binding energy. Finally, in vitro experiments such as CCK-8, flow cytometry and RT-PCR assays were carried out to preliminarily verify the potential mechanisms.ResultsThrough the construction of a pharmacological network, we identified a total of 28 active components in SZC and 52 potential therapeutic targets. According to GO and KEGG enrichment analyses, the effects of SZC treatment may be related to oxidative stress, steroid metabolism, apoptosis and proliferation. We also experimentally confirmed that SZC can regulate the expression of steroid hormone biosynthesis-related genes, inhibit ectopic endometrial stromal cell (EESC) proliferation and oxidative stress, and promote apoptosis.ConclusionThis study explored the potential mechanism of SZC in the treatment of EMs through network pharmacology and experiments, providing a basis for further future research on SZC in the treatment of EMs.
Project description:20 (R)-25-methoxyl-dammarane-3β, 12β, 20-triol (AD-1), a novel ginsenoside isolated from stem and leaf of Panax Notoginseng, has anticancer activity against a variety of malignant tumors. However, the pharmacological mechanism of AD-1 on colorectal cancer (CRC) remains unclear. The purpose of this study was to verify the potential mechanism of action of AD-1 against CRC through network pharmacology and experiments. A total of 39 potential targets were obtained based on the intersection of AD-1 and CRC targets, and key genes were analyzed and identified from the PPI network using Cytoscape software. 39 targets were significantly enriched in 156 GO terms and 138 KEGG pathways, among which PI3K-Akt signaling pathway was identified as one of the most enriched pathways. Based on experimental results, AD-1 can inhibit the proliferation and migration of SW620 and HT-29 cells, and induce their apoptosis. Subsequently, the HPA and UALCAN databases showed that PI3K and Akt were highly expressed in CRC. AD-1 also decreased the expressions of PI3K and Akt. In summary, these results suggest that AD-1 can play an anti-tumor role by inducing cell apoptosis and regulating PI3K-Akt signaling pathway.
Project description:IntroductionSafranal is an active component of the traditional Tibetan medicine (TTM) saffron, which has potential anticancer activity.Methods and resultsHere, we studied the therapeutic effect and mechanism of safranal on GBM. CCK-8, GBM-brain organoid coculture experiments and 3D tumour spheroid invasion assays showed that safranal inhibited GBM cell proliferation and invasion in vitro. Network pharmacology, RNA-seq, molecular docking analysis, western blotting, apoptosis, and cell cycle assays predicted and verified that safranal could promote GBM cell apoptosis and G2/M phase arrest and inhibit the PI3K/AKT/mTOR axis. In vivo experiments showed that safranal could inhibit GBM cell growth alone and in combination with TMZ.ConclusionThis study revealed that safranal inhibits GBM cell growth in vivo and in vitro, promotes GBM cell apoptosis and G2/M phase arrest, inhibits the PI3K/AKT/mTOR axis and cooperate with TMZ.
Project description:ObjectiveNonalcoholic fatty liver disease (NAFLD) has become a common chronic liver disease that is harmful to human health. Moreover, there is currently no FDA-approved first-line drug for the treatment of nonalcoholic steatohepatitis (NASH) or NAFLD. Traditional Chinese medicine (TCM) is widely used to ameliorate liver diseases, such as the traditional ancient recipe called Three Flower Tea (TFT), which consists of double rose (Rosa rugosa), white chrysanthemum (Chrysanthemum morifolium), and Daidaihua (Citrus aurantium). However, the mechanisms of the action of TFT are not clear. Therefore, this study aimed to elucidate the mechanisms of TFT against NAFLD in high-fat diet (HFD)-induced rats.MethodsThis study utilized bioinformatics and network pharmacology to establish the active and potential ingredient-target networks of TFT. Furthermore, a protein-protein interaction (PPI) network was constructed, and enrichment analysis was performed to determine the key targets of TFT against NAFLD. Furthermore, an animal experiment was conducted to evaluate the therapeutic effect and confirm the key targets of TFT against NAFLD.ResultsA total of 576 NAFLD-related genes were searched in GeneCards, and under the screening criteria of oral bioavailability (OB) ≥30% and drug-likeness (DL) ≥0.18, a total of 19 active ingredients and 210 targets were identified in TFT. Network pharmacology analysis suggested that 55 matching targets in PPIs were closely associated with roles for NAFLD treatment. Through the evaluation of network topology parameters, four key central genes, PPARγ, SREBP, AKT, and RELA, were identified. Furthermore, animal experiments indicated that TFT could reduce plasma lipid profiles, hepatic lipid profiles and hepatic fat accumulation, improve liver function, suppress inflammatory factors, and reduce oxidative stress. Through immunoblotting and immunofluorescence analysis, PPARγ, SREBP, AKT, and RELA were confirmed as targets of TFT in HFD-induced rats.ConclusionIn summary, our results indicate that TFT can prevent and treat NAFLD via multiple targets, including lipid accumulation, antioxidation, insulin sensitivity, and inflammation.