Preparation of Low Grain Boundary Perovskite Crystals with Excellent Performance: The Inhibition of Ammonium Iodide.
Ontology highlight
ABSTRACT: For the study, we prepared a low grain boundary three-dimensional CH3NH3PbI3 crystal (3D-MAPbI3) on TiO2 nanoarrays by inhibition of ammonium iodide and discussed the formation mechanism of the crystal. Based on the 3D-MAPbI3 crystal, solar cells showed modified performance with a power conversion efficiency (PCE) of up to 19.3%, which increases by 36.8% in contrast to the counterparts. We studied the internal photocurrent conversion process. The highest external quantum efficiency is up to 92%, and the electron injection efficiency is remarkably facilitated where the injection time decreases by 37.8% compared to the control group. In addition, based on 3D-MAPbI3, solar cells showed excellent air stability, which possesses 78.3% of the initial PCE, even though they were exposed to air for 30 days. Our results demonstrate a promising approach for the fabrication of perovskite solar cells with high efficiency and stability.
SUBMITTER: Gao F
PROVIDER: S-EPMC8154220 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA