ABSTRACT: The study investigated resveratrol's effect on growth performance, intestinal development, and antioxidant capacity of broilers subjected to heat stress (HS). A total of 162 21-day-old male AA broilers were randomly divided into 3 treatment groups with 6 replicates of 9 birds each. The 3 treatment groups were as follows: the control (CON), in which broilers were housed at 22 ± 1 °C for 24 h day-1, and the HS and HS + resveratrol (400 mg/kg) groups, in which broilers were housed at 33 ± 1 °C for 10 h a day from 8:00 to 18:00 and 22 ± 1 °C for rest of the time. Results indicated that birds in the HS group exhibited lower (p < 0.05) final body weight (BW) and average daily gain (ADG) compared with birds in the CON group. HS birds also had lower (p < 0.05) relative jejunum weight, relative ileum and jejunum length, jejunal villus height, and villus height to crypt depth ratios than the CON group. The activities of glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and the mRNA levels of NF-E2-related factor 2 (Nrf2), SOD1, and GPX were also lower (p < 0.05) in the HS than CON group. The HS group had higher (p < 0.05) protein carbonyl (PC) contents and Kelch-like ECH-associated protein 1 (Keap1) mRNA levels. Compared with HS group, the HS + resveratrol group exhibited higher (p < 0.05) BW and ADG, relative jejunum weight, relative length of ileum, jejunal villus height, activities of GPX and GST, and mRNA levels of Nrf2 and SOD1, but they had lower (p < 0.05) PC content and Keap1 mRNA levels. In conclusion, resveratrol can improve the intestinal development and antioxidant function of broilers under HS, and therefore improve growth performance. The mechanism by which resveratrol enhances the intestinal antioxidant capacity is mediated by Nrf2 signaling pathway.