Oxidase Reactivity of CuII Bound to N-Truncated Aβ Peptides Promoted by Dopamine.
Ontology highlight
ABSTRACT: The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu-Aβ4-x] and [Cu-Aβ1-x] complexes toward dopamine and other catechols. The results show that the CuII-ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII-Aβ-catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu-Aβ4-x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.
SUBMITTER: Bacchella C
PROVIDER: S-EPMC8155989 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA