Synthesis of ABn-type colloidal molecules by polymerization-induced particle-assembly (PIPA)†‡ † This work is dedicated to Professor Caiyuan Pan, University of Science and Technology of China, for his 80th birthday in May, 2020.‡ Electronic supplementary information (ESI) available: Experimental details and figures. See DOI: 10.1039/d0sc00219d
Ontology highlight
ABSTRACT: Conventional synthesis of colloidal molecules (CMs) mainly depends on particle-based self-assembly of patchy building blocks. However, direct access to CMs by the self-assembly of isotropic colloidal subunits remains challenging. Here, we report the mass production of ABn-type CMs by polymerization-induced particle-assembly (PIPA), using a linear ABC triblock terpolymer system. Starting from diblock copolymer spheres, the association of spheres takes place in situ during the polymerization of the third block. The third blocks aggregate into attractive domains, which connect spheres into CMs. The stability of CMs is ensured, as long as the conversions are limited to ca. 50%, and the pH is low. The valence of ABn-type CMs (n = 2–6) is determined by the volume ratio of the polymer blocks. By tuning the volume ratio, 78.5% linear AB2-type CMs are yielded. We demonstrate that polymerization-induced particle-assembly is successful for the scalable fabrication of ABn-type CMs (50 g L−1), and can be easily extended to vastly different triblock terpolymers, for a wide range of applications. Using isotropic diblock copolymer spheres, polymerization-induced particle-assembly directly produces colloidal molecules.
SUBMITTER: Li D
PROVIDER: S-EPMC8157509 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA