Unknown

Dataset Information

0

Epitope-targeting platform for broadly protective influenza vaccines.


ABSTRACT: Seasonal influenza vaccines are often ineffective because they elicit strain-specific antibody responses to mutation-prone sites on the hemagglutinin (HA) head. Vaccines that provide long-lasting immunity to conserved epitopes are needed. Recently, we reported a nanoparticle-based vaccine platform produced by solid-phase peptide synthesis (SPPS) for targeting linear and helical protein-based epitopes. Here, we illustrate its potential for building broadly protective influenza vaccines. Targeting known epitopes in the HA stem, neuraminidase (NA) active site, and M2 ectodomain (M2e) conferred 50-75% survival against 5LD50 influenza B and H1N1 challenge; combining stem and M2e antigens increased survival to 90%. Additionally, protein sequence and structural information were employed in tandem to identify alternative epitopes that stimulate greater protection; we report three novel HA and NA sites that are highly conserved in type B viruses. One new target in the HA stem stimulated 100% survival, highlighting the value of this simple epitope discovery strategy. A candidate influenza B vaccine targeting two adjacent HA stem sites led to >104-fold reduction in pulmonary viral load. These studies describe a compelling platform for building vaccines that target conserved influenza epitopes.

SUBMITTER: Zeigler DF 

PROVIDER: S-EPMC8158873 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7020694 | biostudies-literature
| S-EPMC3948190 | biostudies-literature
| S-EPMC3463593 | biostudies-literature
| S-EPMC3890838 | biostudies-literature
| S-EPMC6748655 | biostudies-literature
| S-EPMC7572813 | biostudies-literature
| S-EPMC4918916 | biostudies-literature
| S-EPMC3509685 | biostudies-literature
| S-EPMC6642127 | biostudies-literature
| S-EPMC8312026 | biostudies-literature