Skyrmion crystals in centrosymmetric itinerant magnets without horizontal mirror plane.
Ontology highlight
ABSTRACT: We theoretically investigate a new stabilization mechanism of a skyrmion crystal (SkX) in centrosymmetric itinerant magnets with magnetic anisotropy. By considering a trigonal crystal system without the horizontal mirror plane, we derive an effective spin model with an anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction for a multi-band periodic Anderson model. We find that the anisotropic RKKY interaction gives rise to two distinct SkXs with different skyrmion numbers of one and two depending on a magnetic field. We also clarify that a phase arising from the multiple-Q spin density waves becomes a control parameter for a field-induced topological phase transition between the SkXs. The mechanism will be useful not only for understanding the SkXs, such as that in Gd[Formula: see text]PdSi[Formula: see text], but also for exploring further skyrmion-hosting materials in trigonal itinerant magnets.
SUBMITTER: Yambe R
PROVIDER: S-EPMC8160153 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA