Project description:Therapy-related myeloid neoplasms (tMN) develop after exposure to cytotoxic and radiation therapy, and due to their adverse prognosis, it is of paramount interest to identify patients at high risk. The presence of clonal hematopoiesis has been shown to increase the risk of developing tMN. The value of analyzing hematopoietic stem cells harvested at leukapheresis before autologous stem cell transplantation (ASCT) with next-generation sequencing and immunophenotyping represents potentially informative parameters that have yet to be discovered. We performed a nested case-control study to elucidate the association between clonal hematopoiesis, mobilization potential, and aberrant immunophenotype in leukapheresis products with the development of tMN after ASCT. A total of 36 patients with nonmyeloid disease who were diagnosed with tMN after treatment with ASCT were included as case subjects. Case subjects were identified from a cohort of 1130 patients treated with ASCT and matched with 36 control subjects who did not develop tMN after ASCT. Case subjects were significantly poorer mobilizers of CD34+ cells at leukapheresis (P = .016), indicating that these patients possess inferior bone marrow function. Both clonal hematopoiesis (odds ratio, 5.9; 95% confidence interval, 1.8-19.1; P = .003) and aberrant expression of CD7 (odds ratio, 6.6; 95% confidence interval, 1.6-26.2; P = .004) at the time of ASCT were associated with an increased risk of developing tMN after ASCT. In conclusion, clonal hematopoiesis, present at low variant allele frequencies, and aberrant CD7 expression on stem cells in leukapheresis products from patients with nonmyeloid hematologic cancer hold potential for the early identification of patients at high risk of developing tMN after ASCT.
Project description:Therapy-related myeloid neoplasms (t-MN) are aggressive leukemia that develops as a complication of prior exposure to DNA-damaging agents. Clonal cytopenia of undetermined significance (CCUS) is a precursor of de novo myeloid neoplasms. Characteristics of CCUS that develop following cytotoxic therapies (therapy-related clonal cytopenia, t-CC) and outcomes following t-CC have not been described. We identified 33 patients with t-CC and compared to a cohort of the WHO-defined t-MN (n = 309). t-CC had a distinct genetic and cytogenetic profile: pathogenic variants (PV) in TET2 and SRSF2 were enriched in t-CC, whereas TP53 PV was more common in t-MN. Ten (30%) t-CC patients developed a subsequent t-MN, with a cumulative incidence of 13%, 23%, and 50% at 6 months, 1, and 5 years, respectively. At t-MN progression, 44% of evaluable patients had identifiable clonal evolution. The median survival following t-CC was significantly superior compared all t-MN phenotype including t-MDS with <5% bone marrow blasts (124.5 vs. 16.3 months, P < 0.001) respectively. The presence of cytogenetic abnormality and the absence of variants in DNMT3A, TET2, or ASXL1 (DTA-genes) were associated with a higher likelihood of developing a subsequent t-MN and an inferior survival. We describe a putative precursor entity of t-MN with distinct features and outcomes.
Project description:TET2 and DNMT3A mutations are frequently identified in T-cell lymphomas of T follicular helper cell origin (TCL-TFH), clonal hematopoiesis (CH), and myeloid neoplasms (MNs). The relationships among these 3 entities, however, are not well understood. We performed comprehensive genomic studies on paired bone marrow and tissue samples as well as on flow cytometry-sorted bone marrow and peripheral blood subpopulations from a cohort of 22 patients with TCL-TFH to identify shared CH-type mutations in various hematopoietic cell compartments. Identical mutations were detected in the neoplastic T-cell and myeloid compartments of 15 out of 22 patients (68%), including TET2 (14/15) and DNMT3A (10/15). Four patients developed MNs, all of which shared CH-type mutations with their TCL-TFH; additional unique genetic alterations were also detected in each patient's TCL-TFH and MN. These data demonstrate that CH is prevalent in patients with TCL-TFH and that divergent evolution of a CH clone may give rise to both TCL-TFH and MNs.
Project description:Therapy-related myeloid neoplasms (t-MN) may occur as a late effect of cytotoxic therapy for a primary malignancy or autoimmune diseases in susceptible individuals. We studied the development of somatic mutations in t-MN, using a collection of follow-up samples from 14 patients with a primary hematologic malignancy, who developed a secondary leukemia (13 t-MN and 1 t-acute lymphoblastic leukemia), at a median latency of 73 months (range 18-108) from primary cancer diagnosis.Using Sanger and next generation sequencing (NGS) approaches we identified 8 mutations (IDH1 R132H, ASXL1 Y591*, ASXL1 S689*, ASXL1 R693*, SRSF2 P95H, SF3B1 K700E, SETBP1 G870R and TP53 Y220C) in seven of thirteen t-MN patients (54%), whereas the t-ALL patient had a t(4,11) translocation, resulting in the KMT2A/AFF1 fusion gene. These mutations were then tracked backwards in marrow samples preceding secondary leukemia occurrence, using pyrosequencing and a NGS protocol that allows the detection of low variant allele frequencies (≥0.1%).Somatic mutations were detectable in the BM harvested at the primary diagnosis, prior to any cytotoxic treatment in three patients, while they were not detectable and apparently acquired by the t-MN clone in five patients.These data show that clonal evolution in t-MN is heterogeneous, with some somatic mutations preceding cytotoxic treatment and possibly favoring leukemic development.
Project description:We studied acute myeloid leukemia (AML) patients with lympho-myeloid clonal hematopoiesis (LM-CH), defined by the presence of DNA methyltransferase 3A (DNMT3A) mutations in both the myeloid and lymphoid T-cell compartment. Diagnostic, complete remission (CR) and relapse samples were sequenced for 34 leukemia-related genes in 171 DNMT3A mutated adult AML patients. AML with LM-CH was found in 40 patients (23%) and was associated with clonal hematopoiesis of indeterminate potential years before AML, older age, secondary AML and more frequent MDS-type co-mutations (TET2, RUNX1 and EZH2). In 82% of AML patients with LM-CH, the preleukemic clone was refractory to chemotherapy and was the founding clone for relapse. Both LM-CH and non-LM-CH MRD-positive AML patients who achieved CR had a high risk of relapse after 10 years (75% and 75%, respectively) compared with patients without clonal hematopoiesis in CR with negative MRD (27% relapse rate). Long-term survival of patients with LM-CH was only seen after allogeneic hematopoietic stem cell transplantation (HSCT). We define AML patients with LM-CH as a distinct high-risk group of AML patients that can be identified at diagnosis through mutation analysis in T cells and should be considered for HSCT.
Project description:Clonal hematopoiesis (CH) results from somatic genomic alterations that drive clonal expansion of blood cells. Somatic gene mutations associated with hematologic malignancies detected in hematopoietic cells of healthy individuals, referred to as CH of indeterminate potential (CHIP), have been associated with myeloid malignancies, while mosaic chromosomal alterations (mCAs) have been associated with lymphoid malignancies. Here, we analyzed CHIP in 55,383 individuals and autosomal mCAs in 420,969 individuals with no history of hematologic malignancies in the UK Biobank and Mass General Brigham Biobank. We distinguished myeloid and lymphoid somatic gene mutations, as well as myeloid and lymphoid mCAs, and found both to be associated with risk of lineage-specific hematologic malignancies. Further, we performed an integrated analysis of somatic alterations with peripheral blood count parameters to stratify the risk of incident myeloid and lymphoid malignancies. These genetic alterations can be readily detected in clinical sequencing panels and used with blood count parameters to identify individuals at high risk of developing hematologic malignancies.
Project description:Clonal hematopoiesis (CH) is a risk factor for the development of therapy-related myelodysplastic syndromes (tMDS) and acute myeloid leukemia (tAML). Adoption of targeted-immunotherapeutics since 2011, may alter the risk of CH progression to tMDS/AML. To study this, we evaluated risk of tMDS and tAML in 667 588 ≥ 1-year survivors of non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), melanoma and multiple-myeloma (MM) diagnosed during: 2000-2005, 2006-2010 and 2011-2016. The risk of tMDS increased significantly after NSCLC across all time periods (Ptrend = 0.002) while tAML risk decreased from 2006-2010 to 2011-2016, coinciding with increasing use of non-chemotherapeutic agents. tAML risk after RCC decreased (Ptrend = 0.007) whereas tMDS risk did not significantly change over time. After melanoma, tMDS and tAML risks were similar to the general population. tMDS and tAML risk after MM increased from the first to second time-period, however, only risk of tMDS decreased during last period. We report diverging trends in the risk of tAML and tMDS after adoption of modern cancer therapies for specific cancers. It is imperative to further explore impact of contemporary treatment strategies on clonal evolution. Modern treatments via their discrete mechanism of actions on pre-existing CH may alter the risk of subsequent tMDS and tAML.