Unknown

Dataset Information

0

Conformation control through concurrent N-H⋯S and N-H⋯O[double bond, length as m-dash]C hydrogen bonding and hyperconjugation effects.


ABSTRACT: In addition to the classical N-H⋯O[double bond, length as m-dash]C non-covalent interaction, less conventional types of hydrogen bonding, such as N-H⋯S, may play a key role in determining the molecular structure. In this work, using theoretical calculations in combination with spectroscopic analysis in both gas phase and solution phase, we demonstrate that both these H-bonding modes exist simultaneously in low-energy conformers of capped derivatives of Attc, a thietane α-amino acid. 6-Membered ring inter-residue N-H⋯S interactions (C6γ), assisted by hyperconjugation between the thietane ring and the backbone, combine with 5-membered ring intra-residue backbone N-H⋯O[double bond, length as m-dash]C interactions (C5) to provide a C5-C6γ feature that stabilizes a planar geometry in the monomer unit. Two contiguous C5-C6γ features in the planar dimer implicate an unprecedented three-centre H-bond of the type C[double bond, length as m-dash]O⋯H(N)⋯SR2, while the trimer adopts two C5-C6γ features separated by a Ramachandran α-type backbone configuration. These low-energy conformers are fully characterized in the gas phase and support is presented for their existence in solution state.

SUBMITTER: Imani Z 

PROVIDER: S-EPMC8163419 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5000859 | biostudies-literature
| S-EPMC5707517 | biostudies-literature
| S-EPMC7898687 | biostudies-literature