Unknown

Dataset Information

0

Nitric oxide down-regulates voltage-gated Na+ channel in cardiomyocytes possibly through S-nitrosylation-mediated signaling.


ABSTRACT: Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and-independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.

SUBMITTER: Wang P 

PROVIDER: S-EPMC8163867 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10569700 | biostudies-literature
| S-EPMC8452925 | biostudies-literature
| S-EPMC21185 | biostudies-literature
| S-EPMC10620092 | biostudies-literature
| S-EPMC10442390 | biostudies-literature
| S-EPMC10168311 | biostudies-literature
| S-EPMC3629057 | biostudies-literature
2022-06-09 | GSE186729 | GEO
| S-EPMC8708424 | biostudies-literature
| S-EPMC3968119 | biostudies-literature