Unknown

Dataset Information

0

LncRNA:DNA triplex-forming sites are positioned at specific areas of genome organization and are predictors for Topologically Associated Domains.


ABSTRACT:

Background

Chromosomes are organized into units called topologically associated domains (TADs). TADs dictate regulatory landscapes and other DNA-dependent processes. Even though various factors that contribute to the specification of TADs have been proposed, the mechanism is not fully understood. Understanding the process for specification and maintenance of these units is essential in dissecting cellular processes and disease mechanisms.

Results

In this study, we report a genome-wide study that considers the idea of long noncoding RNAs (lncRNAs) mediating chromatin organization using lncRNA:DNA triplex-forming sites (TFSs). By analyzing the TFSs of expressed lncRNAs in multiple cell lines, we find that they are enriched in TADs, their boundaries, and loop anchors. However, they are evenly distributed across different regions of a TAD showing no preference for any specific portions within TADs. No relationship is observed between the locations of these TFSs and CTCF binding sites. However, TFSs are located not just in promoter regions but also in intronic, intergenic, and 3'UTR regions. We also show these triplex-forming sites can be used as predictors in machine learning models to discriminate TADs from other genomic regions. Finally, we compile a list of important "TAD-lncRNAs" which are top predictors for TADs identification.

Conclusions

Our observations advocate the idea that lncRNA:DNA TFSs are positioned at specific areas of the genome organization and are important predictors for TADs. LncRNA:DNA triplex formation most likely is a general mechanism of action exhibited by some lncRNAs, not just for direct gene regulation but also to mediate 3D chromatin organization.

SUBMITTER: Soibam B 

PROVIDER: S-EPMC8164242 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9227037 | biostudies-literature
| S-EPMC3333850 | biostudies-other
| S-EPMC8037919 | biostudies-literature
| S-EPMC7202374 | biostudies-literature
| S-EPMC9630315 | biostudies-literature
| S-EPMC1514554 | biostudies-literature
| S-EPMC9142060 | biostudies-literature
2022-09-23 | GSE203252 | GEO
| S-EPMC7783598 | biostudies-literature
2023-04-30 | GSE186703 | GEO