Unknown

Dataset Information

0

Enhanced Accumulation of Cisplatin in Ovarian Cancer Cells from Combination with Wedelolactone and Resulting Inhibition of Multiple Epigenetic Drivers.


ABSTRACT:

Purpose

Cisplatin resistance is a major concern in ovarian cancer treatment. The aim of this study was to investigate if wedelolactone could perform better in resistant ovarian cancer cells when used in combination with cisplatin.

Methods

Growth inhibitory potential of wedelolactone and cisplatin was investigated through MTT reduction assay in ovarian cancer cell lines including A2780 (sensitive), A2780cisR (cisplatin resistant) and A2780ZD0473R. Resistance factor (RF) of drugs was determined in these three cell lines. Combination index (CI) was calculated as a measure of combined drug action. Effect of this combination on changes in the cellular accumulation of platinum levels and platinum-DNA binding was also determined in vitro using AutoDock Vina while the effect of wedelolactone on inhibition of possible key culprits of resistance including Chk1, CD73, AT tip60, Nrf2, Brd1, PCAF, IGF1, mTOR1 and HIF2α was investigated in silico.

Results

Cisplatin and wedelolactone showed a dose-dependent growth inhibitory effect. RF value of wedelolactone was 1.1 in the case of A2780cisR showing its potential to bring more cell death in cisplatin-resistant cells. CI values were found to vary showing antagonistic to additive outcomes. Additive effect was observed for all sequences of administration (0/0, 0/4 and 4/0 h) in A2780cisR. Enhanced cellular accumulation of cisplatin was observed in parent and resistant cells on combination. Docking results revealed that among the selected oncotargets, Chk1, CD73, Nrf2, PCAF and AT tip60 were more vulnerable to wedelolactone than their respective standard inhibitors.

Conclusion

These findings have shown that additive outcome of drug combination in A2780cisR and raised levels of platinum accumulation followed a clear pattern. This observation indicates that the presence of wedelolactone might have contributed to sensitize A2780cisR. However, in silico results point to the possible effects of this compound on epigenetic factors involving tumor microenvironment, epithelial mesenchymal transition, and immune-checkpoint kinases.

SUBMITTER: Sarwar S 

PROVIDER: S-EPMC8164677 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7519871 | biostudies-literature
2013-12-31 | E-GEOD-24590 | biostudies-arrayexpress
2013-12-31 | GSE24590 | GEO
| S-EPMC5746511 | biostudies-literature
| S-EPMC6637630 | biostudies-literature
| S-EPMC5394177 | biostudies-literature
| S-EPMC8122950 | biostudies-literature
2011-12-20 | E-GEOD-28647 | biostudies-arrayexpress
| S-EPMC5731066 | biostudies-literature