Ontology highlight
ABSTRACT: Introduction
Vessel wall magnetic resonance imaging can improve the evaluation of intracranial atherosclerotic disease. However, pathological validation is needed to improve vessel wall magnetic resonance imaging techniques. Human pathology samples are not practical for such analysis, so an animal model is therefore needed.Materials and methods
Watanabe heritable hyperlipidemic rabbits and apolipoprotein E knockout rabbits were evaluated against New Zealand white wild-type rabbits. Evaluation of intracranial arteries was performed with vessel wall magnetic resonance imaging and pathological analysis, rating the presence and severity of disease in each segment. Two-tailed t-tests were performed to compare disease occurrence and severity prevalence among rabbit subtypes. Sensitivity and specificity were calculated to assess the diagnostic accuracy of vessel wall magnetic resonance imaging.Results
Seventeen rabbits (five Watanabe heritable hyperlipidemic, four apolipoprotein E knockout and eight New Zealand white) were analysed for a total of 51 artery segments. Eleven segments (five Watanabe heritable hyperlipidemic and six apolipoprotein E knockout) demonstrated intracranial atherosclerotic disease on pathology. Disease model animals had lesions more frequently than New Zealand white animals (P<0.001). The sensitivity and specificity of vessel wall magnetic resonance imaging for the detection of intracranial atherosclerotic disease were 68.8% and 95.2%, respectively. When excluding mild cases to assess vessel wall magnetic resonance imaging accuracy for detecting moderate to severe intracranial atherosclerotic disease lesions, sensitivity improved to 100% with unchanged specificity.Conclusion
Intracranial atherosclerotic disease can be reliably produced and detected using 3T vessel wall magnetic resonance imaging-compatible Watanabe heritable hyperlipidemic and ApoE rabbit models. Further analysis is needed to characterize better the development and progression of the disease to correlate tissue-validated animal findings with those in human vessel wall magnetic resonance imaging studies.
SUBMITTER: McNally JS
PROVIDER: S-EPMC8165905 | biostudies-literature | 2021 Jun
REPOSITORIES: biostudies-literature
McNally J Scott JS Havenon Adam de A Kim Seong-Eun SE Wang Chuanzhuo C Wang Shuping S Zabriskie Matthew S MS Parker Dennis L DL Baradaran Hediyeh H Alexander Matthew D MD
The neuroradiology journal 20201216 3
<h4>Introduction</h4>Vessel wall magnetic resonance imaging can improve the evaluation of intracranial atherosclerotic disease. However, pathological validation is needed to improve vessel wall magnetic resonance imaging techniques. Human pathology samples are not practical for such analysis, so an animal model is therefore needed.<h4>Materials and methods</h4>Watanabe heritable hyperlipidemic rabbits and apolipoprotein E knockout rabbits were evaluated against New Zealand white wild-type rabbit ...[more]