Unknown

Dataset Information

0

The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation.


ABSTRACT: The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.

SUBMITTER: Lei J 

PROVIDER: S-EPMC8167360 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8287907 | biostudies-literature
| S-EPMC7092865 | biostudies-literature
| S-EPMC2674928 | biostudies-literature
| S-EPMC7247444 | biostudies-literature
| S-EPMC7680711 | biostudies-literature
| S-EPMC7805449 | biostudies-literature
| S-EPMC7194921 | biostudies-literature
| S-EPMC2885933 | biostudies-literature
| S-EPMC2958096 | biostudies-literature
| S-EPMC8682786 | biostudies-literature