Ontology highlight
ABSTRACT: Background
Diagnostic accuracy studies aim to examine the diagnostic accuracy of a new experimental test, but do not address the actual merit of the resulting diagnostic information to a patient in clinical practice. In order to assess the impact of diagnostic information on subsequent treatment strategies regarding patient-relevant outcomes, randomized test-treatment studies were introduced. Various designs for randomized test-treatment studies, including an evaluation of biomarkers as part of randomized biomarker-guided treatment studies, are suggested in the literature, but the nomenclature is not consistent.Methods
The aim was to provide a clear description of the different study designs within a pre-specified framework, considering their underlying assumptions, advantages as well as limitations and derivation of effect sizes required for sample size calculations. Furthermore, an outlook on adaptive designs within randomized test-treatment studies is given.Results
The need to integrate adaptive design procedures in randomized test-treatment studies is apparent. The derivation of effect sizes induces that sample size calculation will always be based on rather vague assumptions resulting in over- or underpowered study results. Therefore, it might be advantageous to conduct a sample size re-estimation based on a nuisance parameter during the ongoing trial.Conclusions
Due to their increased complexity, compared to common treatment trials, the implementation of randomized test-treatment studies poses practical challenges including a huge uncertainty regarding study parameters like the expected outcome in specific subgroups or disease prevalence which might affect the sample size calculation. Since research on adaptive designs within randomized test-treatment studies is limited so far, further research is recommended.
SUBMITTER: Hot A
PROVIDER: S-EPMC8167391 | biostudies-literature |
REPOSITORIES: biostudies-literature