Efficiency comparison of B6(Cg)-Tyrc-2j /J and C57BL/6NTac embryos as hosts for the generation of knockout mice.
Ontology highlight
ABSTRACT: Careful selection of the host embryo is critical to the efficient production of knockout (KO) mice when injecting mouse embryonic stem (mES) cells into blastocysts. B6(Cg)-Tyrc-2j/J (B6 albino) and C57BL/6NTac (B6NTac) strains of mice are widely used to produce host blastocysts for such procedures. Here, we tested these two strains to identify an appropriate match for modified agouti C57BL/6N (JM8A3.N1) mES cells. When comparing blastocyst yield, super-ovulated B6NTac mice produced more injectable blastocysts per female than B6 albino mice (8.2 vs. 5.4). There was no significant difference in birth rate when injected embryos were transferred to the same pseudopregnant recipient strain. However, the live birth rate was significantly higher for B6NTac blastocysts than B6 albino blastocysts (62.7% vs. 50.2%). In addition, the proportion of pups exhibiting high-level and complete chimerism, as identified by coat color, was also significantly higher in the B6NTac strain. There was no obvious difference in the efficiency of germline transmission (GLT) when compared between B6NTac and B6 albino host embryos (61.5% vs. 63.3% for mES clones; 64.5% vs. 67.9% for genes, respectively), thus suggesting that an equivalent GLT rate could be obtained with only a few blastocyst injections for B6NTac embryos. In conclusion, our data indicate that B6NTac blastocysts are a better choice for the microinjection of JM8A3.N1 mES cells than B6 albino blastocysts.
Project description:PurposeInfantile nystagmus syndrome (INS) is a gaze-holding disorder characterized by conjugate, uncontrolled eye oscillations that can result in significant visual acuity loss. INS is often associated with albinism, but the mechanism is unclear. Albino mice have nystagmus; however, a pigmented mouse with a tyr mutation making it phenotypically albino, the B6(CG)-Tyr(c-2J)/J (B6 albino), had not been tested. We tested optokinetic response (OKR) in B6 albino and control mice. RNA-Seq was performed on extraocular muscles (EOM), tibialis anterior (TA) muscle, abducens (CN6), and oculomotor (CN3) neurons to uncover molecular differences that may contribute to nystagmus.MethodsOKR was measured using an ISCAN system. RNA was isolated from four tissues to identify differentially expressed genes and validated with qPCR and immunohistochemistry. Ingenuity pathway analyses identified top biological pathways.ResultsAll B6 albino mice tested had nystagmus. Differential RNA expression analysis showed 383 genes differentially expressed in EOM, 70 in CN3, 20 in CN6, and 639 in the TA. Two genes were differentially expressed in all four tissues: wdfy1 and nnt. Differences were validated by qPCR and immunostaining.ConclusionsThe tyr mutation in B6 albino mice, genotypically pigmented and phenotypically albino, is sufficient to result in spontaneous nystagmus. The two genes with decreased expression in the B6 albino tissues examined, wdfy1 and nnt, have been implicated in mitochondrial dysfunction and stem cell maintenance in other systems. Their function in extraocular muscle is unknown. These studies suggest that this mouse model of nystagmus may allow molecular identification of candidate nystagmus-related genes.
Project description:PURPOSE: Infantile nystagmus syndrome (INS) is a gaze-holding disorder characterized by conjugate, uncontrolled eye oscillations that can result in significant visual acuity loss. INS is often associated with albinism, but the mechanism is unclear. Albino mice have nystagmus; however, a pigmented mouse with a tyr mutation making it phenotypically albino, the B6(CG)-Tyr(c-2J)/J (B6 albino), had not been tested. We tested optokinetic nystagmus reflexes (OKN) in B6 albino and control mice. RNA-Seq was performed on extraocular muscles (EOM), tibialis anterior muscle (TA), abducens (CN6), and oculomotor (CN3) neurons to uncover molecular differences that could account for nystagmus.
Project description:The prevalence of seizures in individuals with fragile X syndrome (FXS) is ~25%; however, there are no reports of spontaneous seizures in the Fmr1 knockout mouse model of FXS. Herein, we report that 48% of adult (median age P96), Fmr1 knockout mice from our colony were found expired in their home cages. We observed and recorded adult Fmr1 knockout mice having spontaneous convulsions in their home cages. In addition, we captured by electroencephalography an adult Fmr1 knockout mouse having a spontaneous seizure-during preictal, ictal, and postictal phases-which confirmed the presence of a generalized seizure. We did not observe this phenotype in control conspecifics or in juvenile (age <P35) Fmr1 knockout mice. We hypothesized that chronic, random, noise perturbations during development caused the phenotype. We recorded decibels (dB) in our vivarium. The average was 61 dB, but operating the automatic door to the vivarium caused spikes to 95 dB. We modified the door to eliminate noise spikes, which reduced unexpected deaths to 33% in Fmr1 knockout mice raised from birth in this environment (P = 0.07). As the modifications did not eliminate unexpected deaths, we further hypothesized that building vibrations may also be a contributing factor. After installing anti-vibration pads underneath housing carts, unexpected deaths of Fmr1 knockout mice born and raised in this environment decreased to 29% (P < 0.01 compared to the original environment). We also observed significant sex effects, for example, after interventions to reduce sound and vibration, significantly fewer male, but not female, Fmr1 knockout mice died unexpectedly (P < 0.001). The spontaneous seizure phenotype in our Fmr1 knockout mice could serve as a model of seizures observed in individuals with FXS, potentially offering a new translationally-valid phenotype for FXS research. Finally, these observations, although anomalous, serve as a reminder to consider gene-environment interactions when interpreting data derived from Fmr1 knockout mice.
Project description:We previously utilized interval-specific congenic lines derived from C57BL/6J (B6) and DBA/2J (D2) alleles to fine map a quantitative trait locus (QTL) influencing methamphetamine (MA)- induced locomotor activity. We identified a 0.23 MB critical interval on chromosome 11 containing only two protein coding genes, Rufy1 and Hnrnph1. Notably, Rufy1 contains three missense SNPs and Hnrnph1 contains 1 SNP near the 5’ UTR. In an effort to identify the molecular mechanisms that bridge genetic variation with behavior, we conducted transcriptome analysis via mRNA sequencing (RNA-seq) in a B6.D2 congenic line (chr.11: 50-60 Mb) that captures the QTL. There was an overrepresentation of cis-regulated, differentially expressed genes within the congenic interval (4 out of 92 differentially expressed genes; FDR < 0.05) and widespread genomic regulation on all autosomes.
Project description:The transcriptome sequencing of melanoma cells from two mouse models differing in the expression level of the scaffold protein Receptor for activated C kinase (RACK1) are presented. Primary melanoma cells were harvested from Tyr:NRasQ61K; Pax3GFP/+ mice, with or without the Tyr:Rack1-HA transgene. Cells were cultured and infected with scramble shRNA or Rack1-targeting shRNA, on technical triplicates of viral infection. Libraries were prepared by selecting polyadenylated mRNAs and RNA Sequencing (RNASeq) was performed. Samples are described in the SRA portal (SRP096162) and FASTQ files have been deposited in Sequence Read Archive (accession numbers: SRR5150106 to SRR5150117). The interpretation of these data is presented in the following research article: "RACK1 cooperates with NRASQ61K to promote melanoma in vivo" (Campagne et al., 2017, doi: 10.1016/j.cellsig.2017.03.015) [1].
Project description:Circulating microRNAs (miRNAs) are being considered as non-invasive biomarkers for disease progression and clinical trials. Congenital muscular dystrophy with deficiency of laminin α2 chain (LAMA2-CMD) is a very severe form of muscular dystrophy, for which no treatment is available. In order to identify LAMA2-CMD biomarkers we have profiled miRNAs in urine from the dy2J /dy2J mouse model of LAMA2-CMD at three distinct time points (representing asymptomatic, initial and established disease). We demonstrate that unique groups of miRNAs are differentially expressed at each time point. We suggest that urine miRNAs can be sensitive biomarkers for different stages of LAMA2-CMD.
Project description:Prenatal alcohol exposure can result in fetal alcohol spectrum disorders (FASD). Not all women who consume alcohol during pregnancy have children with FASD and studies have shown that genetic factors can play a role in ethanol teratogenesis. We examined gene expression in embryos and placentae from C57BL/6J (B6) and DBA/2J (D2) mice following prenatal alcohol exposure. B6 fetuses are susceptible to morphological malformations following prenatal alcohol exposure while D2 are relatively resistant.Male and female B6 and D2 mice were mated for 2 hours in the morning, producing 4 embryonic genotypes: true-bred B6B6 and D2D2, and reciprocal B6D2 and D2B6. On gestational day 9, dams were intubated with 5.8 g/kg ethanol, an isocaloric amount of maltose dextrin, or nothing. Four hours later, dams were sacrificed and embryos and placentae were harvested. RNA was extracted, labeled and hybridized to Affymetrix Mouse Genome 430 v2 microarray chips. Data were normalized, subjected to analysis of variance and tested for enrichment of gene ontology molecular function and biological process using the Database for Annotation, Visualization and Integrated Discovery (DAVID).Several gene classes were differentially expressed in B6 and D2 regardless of treatment, including genes involved in polysaccharide binding and mitosis. Prenatal alcohol exposure altered expression of a subset of genes, including genes involved in methylation, chromatin remodeling, protein synthesis, and mRNA splicing. Very few genes were differentially expressed between maltose-exposed tissues and tissues that received nothing, so we combined these groups for comparisons with ethanol. While we observed many expression changes specific to B6 following prenatal alcohol exposure, none were specific for D2. Gene classes up- or down-regulated in B6 following prenatal alcohol exposure included genes involved in mRNA splicing, transcription, and translation.Our study identified several classes of genes with altered expression following prenatal alcohol exposure, including many specific for B6, a strain susceptible to ethanol teratogenesis. Lack of strain specific effects in D2 suggests there are few gene expression changes that confer resistance. Future studies will begin to analyze functional significance of the expression changes.
Project description:The genetic mechanisms underlying fentanyl addiction, a highly heritable disease, are unknown. Identifying these mechanisms will lead to better risk assessment, early diagnosis, and improved intervention. To this end, we used intravenous fentanyl self-administration to quantify classical self-administration phenotypes and addiction-like fentanyl seeking in male and female mice from the two founder strains of the BXD recombinant inbred mouse panel (C57BL/6J and DBA/2J). We reached three primary conclusions from these experiments. First, mice from all groups rapidly acquired intravenous fentanyl self-administration and exhibited a dose-response curve, extinction burst, and extinction of the learned self-administration response. Second, fentanyl intake (during acquisition and dose response) and fentanyl seeking (during extinction) were equivalent among groups. Third, strain effects, sex effects, or both were identified for several addiction-like behaviors (cue-induced reinstatement, stress-induced reinstatement, escalation of intravenous fentanyl self-administration). Collectively, these data indicate that C57BL/6J and DBA/2J mice of both sexes were able to acquire, regulate, and extinguish intravenous fentanyl self-administration. Moreover, these data reveal novel strain and sex effects on addiction-like behaviors in the context of intravenous fentanyl self-administration in mice and indicate that the full BXD panel can be used to identify and dissect the genetic mechanisms underlying these effects.