Project description:SARS-CoV-2 Delta (B.1.617.2) variant of concern (VOC) and other VOCs are spreading in Europe. Micro-neutralisation assays with sera obtained after Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in 36 healthcare workers (31 female) demonstrated significant fold change reduction in neutralising titres compared with the original virus: Gamma (P.1) 2.3, Beta (B.1.351) 10.4, Delta 2.1 and 2.6. The reduction of the Alpha (B.1.1.7) variant was not significant. Despite being lower, remaining neutralisation capacity conferred by Comirnaty against Delta and other VOCs is probably protective.
Project description:In this prospective observational cohort study we analyzed cellular and serological immune response parameters against SARS-CoV-2 and current variants of concern (VOC) in 147 COVID-19-convalescent and 39 COVID-19-naïve individuals before and after BNT162b2 booster vaccination. No significant differences regarding immunological response parameters were observed between younger and older individuals. Booster vaccination induced full recovery of both cellular and serological response parameters including IFN-γ secretion and anti-spike antibody titers with strong neutralization capacities against wild type SARS-COV-2 and Delta. Surprisingly, even serological neutralization capacity against Omicron was detectable one month after second vaccination and four months before it had been first observed in South Africa. As a result, more than 90% of convalescent individuals exhibited detectable and 75% strong Omicron neutralization capacity after booster vaccination, compared with 72% and 46% of COVID-19-naïve individuals. Our results support the notion that broad and cross-reactive immune memory against SARS-CoV-2 including currently known VOCs can be established by booster vaccination with spike-based mRNA vaccines like BNT162b2, particularly in COVID-19-convalescent individuals of all ages. Nevertheless, especially in COVID-19-naïve individuals future variants escaping the memory immune response may require vaccine approaches such as inactivated whole virus vaccines, which include all antigenic components of the virus.
Project description:The concentration of SARS-CoV-2-specific serum antibodies, elicited by vaccination or infection, is a primary determinant of anti-viral immunity, which correlates with protection against infection and COVID-19. Serum samples were obtained from 25 897 participants and assayed for anti-SARS-CoV-2 spike protein RBD IgG antibodies. The cohort was composed of newly vaccinated BNT162b2 recipients, in the first month or 6 months after vaccination, COVID-19 patients and a general sample of the Israeli population. Antibody levels of BNT162b2 vaccine recipients were negatively correlated with age, with a prominent decrease in recipients over 55 years old, which was most significant in males. This trend was observable within the first month and 6 months after vaccination, while younger participants were more likely to maintain stable levels of serum antibodies. The antibody concentration of participants previously infected with SARS-CoV-2 was lower than the vaccinated and had a more complex, non-linear relation to age, sex and COVID-19 symptoms. Taken together, our data supports age and sex as primary determining factors for both the magnitude and durability of humoral response to SARS-CoV-2 infection and the COVID-19 vaccine. Our results could inform vaccination policies, prioritizing the most susceptible populations for repeated vaccination.
Project description:Background: The emergence of new SARS-CoV-2 variants, which evade immunity, has raised the urgent need for multiple vaccine booster doses for vulnerable populations. In this study, we aimed to estimate the BNT162b2 booster effectiveness against the spread of coronavirus variants in a hemodialysis population. Methods: We compared humoral and cell-mediated immunity in 100 dialysis patients and 66 age-matched volunteers, before and 2-3 weeks following the first booster vaccine dose. Participants were assessed for anti-spike (RBD) antibody titer, neutralizing antibodies against B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants, spike-specific T-cell responses by FACS and infection outbreak after the first and second booster. Results: Anti-spike antibody titer was significantly increased following the booster, with reduced humoral and cellular response in the dialysis patients. Neutralizing antibody levels increased significantly after the booster dose, with an inferior effect (≤2 fold) against Omicron compared with the Delta variant. Furthermore, CD4+ and CD8+ T-cell activation by Delta spike protein was preserved in 70% of PBMCs from the dialysis patients. A second booster dose tended to reduce breakthrough infections in the dialysis patients. Conclusions: Until the release of an updated vaccine, BNT162b2 booster doses will improve the humoral and cell-mediated immunity against variants. These findings support the importance of repetitive booster doses for hemodialysis patients.
Project description:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.
Project description:Emerging SARS-CoV-2 variants raise questions about escape from previous immunity. As the population immunity to SARS-CoV-2 has become more complex due to prior infections with different variants, vaccinations or the combination of both, understanding the antigenic relationship between variants is needed. Here, we have assessed neutralizing capacity of 120 blood specimens from convalescent individuals infected with ancestral SARS-CoV-2, Alpha, Beta, Gamma or Delta, double vaccinated individuals and patients after breakthrough infections with Delta or Omicron-BA.1. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta and Omicron-BA.1) determined by plaque-reduction neutralization assay allowed us to map the antigenic relationship of SARS-CoV-2 variants. Highest neutralization titers were observed against the homologous variant. Antigenic cartography identified Zeta and Omicron-BA.1 as separate antigenic clusters. Substantial immune escape in vaccinated individuals was detected for Omicron-BA.1 but not Zeta. Combined infection/vaccination derived immunity results in less Omicron-BA.1 immune escape. Last, breakthrough infections with Omicron-BA.1 lead to broadly neutralizing sera.
Project description:To fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), mass vaccination has begun in many countries. To investigate the usefulness of a serological assay to predict vaccine efficacy, we analyzed the levels of IgG, IgM, and IgA against the receptor-binding domain (RBD) of SARS-CoV-2 in the sera from BNT162b2 vaccinated individuals in Japan. This study included 219 individuals who received two doses of BNT162b2. The levels of IgG, IgM, and IgA against RBD were measured by enzyme-linked immunosorbent assay before and after the first and second vaccination, respectively. The relationship between antibody levels and several factors, including age, gender, and hypertension were analyzed. Virus-neutralizing activity in sera was measured to determine the correlation with the levels of antibodies. A chemiluminescent enzyme immunoassay (CLEIA) method to measure IgG against RBD was developed and validated for the clinical setting. The levels of all antibody isotypes were increased after vaccination. Among them, RBD-IgG was dramatically increased after the second vaccination. The IgG levels in females were significantly higher than in males. There was a negative correlation between age and IgG levels in males. The IgG levels significantly correlated with the neutralizing activity. The CLEIA assay measuring IgG against RBD showed a reliable performance and a high correlation with neutralizing activity. Monitoring of IgG against RBD is a powerful tool to predict the efficacy of SARS-CoV-2 vaccination and provides useful information in considering a personalized vaccination strategy for COVID-19. IMPORTANCE Mass vaccination campaigns using mRNA vaccines against SARS-CoV-2 have begun in many countries. Serological assays to detect antibody production may be a useful tool to monitor the efficacy of SARS-CoV-2 vaccination in individuals. Here, we reported the induction of antibody isotype responses after the first and second dose of the BNT162b2 vaccine in a well-defined cohort of employees in Japan. We also reported that age, gender, and hypertension are associated with differences in antibody response after vaccination. This study not only provides valuable information with respect to antibody responses after BNT162b2 vaccination in the Japanese population but also the usefulness of serological assays for monitoring vaccine efficacy in clinical laboratories to determine a personalized vaccination strategy for COVID-19.