Project description:Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multidrug-resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to that of seven commonly used antibiotics in well-characterized multidrug-resistant pathogens and then determined their efficacy in the biofilm setting. MIC90 values for cefiderocol were consistently lower than those of other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, and tobramycin) in all strains tested. Cefiderocol treatment displayed a reduction in the levels of Pseudomonas aeruginosa biofilm (93%, P < 0.0001) superior to that seen with the other antibiotics (49% to 82%). Cefiderocol was generally as effective as or superior to the other antibiotics, depending on the pathogen-antibiotic combination, in reducing biofilm in other pathogens. There was a trend toward greater biofilm reduction seen with increased antibiotic dose or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.
Project description:Objectives: Carbapenem-resistant Acinetobacter baumannii (CRAB) are one of the most difficult pathogen to treat. The only drug recently approved by the FDA that is active against CRAB is cefiderocol. However, recent studies have shown higher all-cause mortality rate in the group of patients treated with cefiderocol, that may be due to heteroresistance, a phenotype characterized by the survival of a small proportion of cells in a population seemingly isogenic. Previous studies showed that adding human fluids to CRAB cultures can lead to CFDC heteroresistance. To better understand the nature of this phenomenon, we carried out molecular and phenotypic analyses of CRAB heteroresistant bacterial subpopulations. Methods: The CRAB strain AMA40 was cultured in the presence of cefiderocol and human pleural fluid (HPF) to isolate heteroresistant variants. Two of them, AMA40 IHC_1 and IHC_2, were subjected to whole genome sequencing and transcriptomic analysis to identify the mutations and transcriptomic changes responsible for the development of cefiderocol resistance. The impact of mutations on the pharmacodynamic activity of cefiderocol was assessed by susceptibility testing, EDTA and Boronic acid inhibition analysis, biofilm formation, and static time-kill assays. Results: Variants AMA40 IHC_1 and IHC_2 had 53 mutations, forty of which were common to both heteroresistant strains. None of the mutations are located inside genes associated with iron-uptake systems or β-lactam resistance. However, pipA, a gene associated with iron homeostasis in other species, was mutated in heteroresistant strains. Transcriptomic analyses revealed modifications in levels of expression of genes associated with antibiotic resistance. The blaNDM-1, blaADC-2, pbp3, and pbp1 were expressed at higher levels. At the same time, the carO and ompA genes’ expression was reduced. Collateral resistance to amikacin was observed in the heteroresistant variants. Static time-kill assays showed that when CA-MHB was supplemented with human serum albumin, the main protein component of HPF, cefiderocol killing activity was considerably reduced in all three strains. Conclusions: We conclude that heteroresistance to cefiderocol in CRAB, when exposed to fluids containing high HSA, is caused by mutations and modifications in the expression of genes associated with resistance to β-lactams.
Project description:BACKGROUND:Rates of colonization and infection with carbapenem-resistant Gram-negative pathogens are on the rise, particularly in southeastern European countries, and this is increasingly true in Germany as well. The organisms in question include enterobacteriaceae such as Klebsiella pneumoniae and Escherichia coli and non-fermenting bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii. As the carbapenems have been the gold standard to date for the systemic treatment of serious infections with Gram-negative bacteria, carbapenem resistance presents new and difficult challenges in therapeutic decision-making, particularly because of the high frequency of coresistance. METHODS:This review is based on pertinent publications retrieved by a selective search in PubMed and on other applicable literature. RESULTS:Multiresistant Gram-negative (MRGN) pathogens are classified in Germany according to their resistance to four different classes of antibiotics; fluoroquinolones, piperacillin, third-generation cephalosporins, and carbapenems. Quadruple MRGN pathogens are resistant to all four groups, triple MRGN pathogens to three of them. There are a number of therapeutic alternatives to carbapenems that can be applied with the aid of sensitive microbiological and/or molecular genetic testing. The following antibiotics are often the only ones that can be used to treat quadruple MRGN pathogens: colistin, aminoglycosides, tigecycline, fosfomycin, ceftazidime/avibactam, and ceftolozan/tazobactam. Carbapenems, too, may still be an option in certain situations. There is also evidence that combinations of antibiotics against which the pathogen is resistant individually can some- times be a valid treatment option; these include combinations of colistin with one or two carbapenems. CONCLUSION:The treatment of severe infection with carbapenem-resistant pathogens should be individualized and carried out in an interdisciplinary framework, in consideration of antibiotic pharmacokinetics and pharmacodynamics in each case. The treat- ment options are based on evidence from in vitro studies, retrospective studies, and case series, which must be interpreted with caution. Randomized clinical trials are needed to test each of the various combined approaches.
Project description:Cefiderocol is a novel catechol-substituted siderophore cephalosporin that binds to the extracellular free iron, and uses the bacterial active iron transport channels to penetrate in the periplasmic space of Gram-negative bacteria (GNB). Cefiderocol overcomes many resistance mechanisms of these bacteria. Cefiderocol is approved for the treatment of complicated urinary tract infections, hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia in the case of adults with limited treatment options, based on the clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In the CREDIBLE-CR trial, a higher all-cause mortality was observed in the group of patients who received cefiderocol, especially those with severe infections due to Acinetobacter spp. Further phase III clinical studies are necessary in order to evaluate cefiderocol´s efficacy in the treatment of serious infections.
Project description:Antimicrobial resistance in Gram-negative pathogens represents a global threat to human health. This study determines the antimicrobial potential of a taxonomically and geographically diverse collection of 263 Burkholderia (sensu lato) isolates and applies natural product dereplication strategies to identify potentially novel molecules. Antimicrobial activity is almost exclusively present in Burkholderia sensu stricto bacteria and rarely observed in the novel genera Paraburkholderia, Caballeronia, Robbsia, Trinickia, and Mycetohabitans. Fourteen isolates show a unique spectrum of antimicrobial activity and inhibited carbapenem-resistant Gram-negative bacterial pathogens. Dereplication of the molecules present in crude spent agar extracts identifies 42 specialized metabolites, 19 of which represented potentially novel molecules. The known identified Burkholderia metabolites include toxoflavin, reumycin, pyrrolnitrin, enacyloxin, bactobolin, cepacidin, ditropolonyl sulfide, and antibiotics BN-227-F and SF 2420B, as well as the siderophores ornibactin, pyochelin, and cepabactin. Following semipreparative fractionation and activity testing, a total of five potentially novel molecules are detected in active fractions. Given the molecular formula and UV spectrum, two of those putative novel molecules are likely related to bactobolins, and another is likely related to enacyloxins. The results from this study confirm and extend the observation that Burkholderia bacteria present exciting opportunities for the discovery of potentially novel bioactive molecules.
Project description:PurposeCarbapenems are considered the most efficient antibiotic used in the treatment of nosocomial infections. Carbapenem-resistant Gram-negative rods are becoming a serious hazard in hospitals threatening public health. The aim of the current study was to investigate the prevalence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections, along with antimicrobial resistance profiles, carbapenemase and metallo-β-lactamase production, and their molecular characterization.MethodsA total of 186 clinical specimens were collected from 133 patients at various hospitals in Cairo, Egypt. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, detection of carbapenemase production using the modified Hodge test (MHT), the metallo-β-lactamase production using the EDTA combined disc test (CDT), and PCR-based detection of the bla KPC and bla GES resistance genes. The identification of the highly resistant retrieved isolates was then confirmed by 16S rRNA gene sequencing.ResultsThe most common isolated Gram-negative species was Klebsiella pneumoniae (40.9%), followed by Acinetobacter baumannii (18.8%), Pseudomonas aeruginosa (17.3%), Escherichia coli (15.4%), Enterobacter aerogenes (5.3%), and Proteus mirabilis (2.4%). The prevalence of carbapenem-resistant isolates was 36.1% (n=75). However, 86.5% of the recovered clinical isolates were susceptible to colistin. The MHT revealed that 33.6% (n=70) of the tested strains were positive for carbapenemase production, while the CDT showed that 33.17% (n=69) of the examined strains were metallo-β-lactamase producers. The PCR revealed that 98.6% (74/75) of the tested strains possessed the bla KPC gene; moreover, 97.3% (73/75) of the examined strains harbored the bla GES gene.ConclusionThis study displayed the emergence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections. The accurate identification of carbapenem-resistant bacterial pathogens is pivotal for the treatment of patients, in addition to propelling appropriate contamination control measures to restrain the fast spread of such pathogens. Colistin showed a potent in vitro antimicrobial activity against the carbapenem-resistant strains.
Project description:Activities of cefiderocol under simulated human plasma concentrations at the recommended dosing regimen of 2 g every 8 h with a 3-h infusion were evaluated using an in vitro chemostat model. Against a total of 6 meropenem-resistant Gram-negative strains with cefiderocol MICs of 0.5 to 4 μg/ml, including metallo-β-lactamase producers and carbapenem-resistant Acinetobacter baumannii, cefiderocol treatment showed a bactericidal effect within 8 h and sustained efficacy with no marked bacterial regrowth over 24 h.
Project description:Carbapenem-resistant organisms (CRO) are a major global public health threat. Enterobacterales hydrolyze almost all β-lactams through carbapenemase production. Infections caused by CRO are challenging to treat due to the limited number of antimicrobial options. This leads to significant morbidity and mortality. Over the last few years, several new antibiotics effective against CRO have been approved. Some of them (e.g., plazomicin or imipenem-cilastatin-relebactam) are currently approved for use only by adults; others (e.g., ceftazidime-avibactam) have recently been approved for use by children. Recommendations for antibiotic therapy of CRO infections in pediatric patients are based on evidence mainly from adult studies. The availability of pediatric pharmacokinetic and safety data is the cornerstone to broaden the use of proposed agents in adults to the pediatric population. This article provides a comprehensive review of the current knowledge regarding infections caused by CRO with a focus on children, which includes epidemiology, risk factors, outcomes, and antimicrobial therapy management, with particular attention being given to new antibiotics.
Project description:In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6'-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6'-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.