Unknown

Dataset Information

0

The autophagy protein Becn1 improves insulin sensitivity by promoting adiponectin secretion via exocyst binding.


ABSTRACT: Autophagy dysregulation is implicated in metabolic diseases, including type 2 diabetes. However, the mechanism by which the autophagy machinery regulates metabolism is largely unknown. Autophagy is generally considered a degradation process via lysosomes. Here, we unveil a metabolically important non-cell-autonomous, non-degradative mechanism regulated by the essential autophagy protein Becn1 in adipose tissue. Upon high-fat diet challenge, autophagy-hyperactive Becn1F121A mice show systemically improved insulin sensitivity and enhanced activation of AMP-activated protein kinase (AMPK), a central regulator of energy homeostasis, via a non-cell-autonomous mechanism mediated by adiponectin, an adipose-derived metabolic hormone. Adipose-specific Becn1F121A expression is sufficient to activate AMPK in non-adipose tissues and improve systemic insulin sensitivity by increasing adiponectin secretion. Further, Becn1 enhances adiponectin secretion by interacting with components of the exocyst complex via the coiled-coil domain. Together, our study demonstrates that Becn1 improves insulin sensitivity by facilitating adiponectin secretion through binding the exocyst in adipose tissue.

SUBMITTER: Kuramoto K 

PROVIDER: S-EPMC8177967 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5260975 | biostudies-literature
| S-EPMC8206314 | biostudies-literature
| S-EPMC2950311 | biostudies-literature
| S-EPMC3819252 | biostudies-literature
| S-EPMC7499888 | biostudies-literature
| S-EPMC3461897 | biostudies-other
2013-11-21 | E-GEOD-36031 | biostudies-arrayexpress
2013-11-21 | GSE36031 | GEO
| S-EPMC6054876 | biostudies-literature
| S-EPMC7477524 | biostudies-literature