Project description:BackgroundThe diagnosis and prognosis of diffuse axonal injury (DAI) remain challenging. This research aimed to analyze the impact on activities of daily living (ADL), functional outcomes, quality of life (QoL), and the association between lesion severity and DAI location identified through imaging exams.MethodsThis prospective cohort study included 95 patients diagnosed with DAI. Data were collected at admission, three, six, and twelve months post-injury. The associations between variables were evaluated using a mixed-effects model.ResultsFunctional recovery and QoL improved between three and twelve months after DAI. An interaction was observed between independence in performing ADL and subarachnoid hemorrhage (p = 0.043) and intraventricular hemorrhage (p = 0.012). Additionally, an interaction over time was observed between the Glasgow Outcome Scale (GOS) and DAI severity (p < 0.001), brain lesions (p = 0.014), and the Disability Rating Scale (DRS) with injury in brain hemispheres (p = 0.026) and Adams classification (p = 0.013). Interaction effects over time were observed with the general health perceptions and energy/vitality domains with intraventricular hemorrhage, and the social functioning domain with the obliteration of basal cisterns and Gentry's classification.ConclusionThe use of CT in the acute phase of DAI is important for predicting outcomes. The severity and location of DAI are associated with functional outcomes, ADL, and QoL.
Project description:In this study, three problems associated with diagnosing diffuse axonal injury (DAI) in patients with traumatic brain injury are reviewed: the shortage of scientific evidence supporting the 6-hour loss of consciousness (LOC) diagnostic criterion to discriminate concussion and DAI, the low sensitivity of conventional brain MRI in the detection of DAI lesions, and the inappropriateness of the term diffuse in DAI. Pathological study by brain biopsy is required to confirm DAI; however, performing a brain biopsy for the diagnosis of DAI in a living patient is impossible. Therefore, the diagnosis of DAI in a living patient is clinically determined based on the duration of LOC, clinical manifestations, and the results of conventional brain MRI. There is a shortage of scientific evidence supporting the use of the 6-hour LOC criterion to distinguish DAI from concussion, and axonal injuries have been detected in many concussion cases with a less than 6-hour LOC. Moreover, due to the low sensitivity of conventional brain MRI, which can only detect DAI lesions in approximately half of DAI patients, diagnostic MRI criteria for DAI are not well established. In contrast, diffusion tensor imaging (DTI) has been shown to have high sensitivity for the detection of DAI lesions. As DTI is a relatively new method, further studies aimed at the establishment of diagnostic criteria for DAI detection using DTI are needed. On the other hand, because DAI distribution is not diffuse but multifocal, and because axonal injury lesions have been detected in concussion patients, steps to standardize the use of terms related to axonal injury in both concussion and DAI are necessary.
Project description:Traumatic brain injury (TBI) commonly results in primary diffuse axonal injury (DAI) and associated secondary injuries that evolve through a cascade of pathological mechanisms. We aim at assessing how myelin and oligodendrocytes react to head angular-acceleration-induced TBI in a previously described model. This model induces axonal injuries visible by amyloid precursor protein (APP) expression, predominantly in the corpus callosum and its borders. Brain tissue from a total of 27 adult rats was collected at 24 h, 72 h and 7 d post-injury. Coronal sections were prepared for immunohistochemistry and RNAscope® to investigate DAI and myelin changes (APP, MBP, Rip), oligodendrocyte lineage cell loss (Olig2), oligodendrocyte progenitor cells (OPCs) (NG2, PDGFRa) and neuronal stress (HSP70, ATF3). Oligodendrocytes and OPCs numbers (expressed as percentage of positive cells out of total number of cells) were measured in areas with high APP expression. Results showed non-statistically significant trends with a decrease in oligodendrocyte lineage cells and an increase in OPCs. Levels of myelination were mostly unaltered, although Rip expression differed significantly between sham and injured animals in the frontal brain. Neuronal stress markers were induced at the dorsal cortex and habenular nuclei. We conclude that rotational injury induces DAI and neuronal stress in specific areas. We noticed indications of oligodendrocyte death and regeneration without statistically significant changes at the timepoints measured, despite indications of axonal injuries and neuronal stress. This might suggest that oligodendrocytes are robust enough to withstand this kind of trauma, knowledge important for the understanding of thresholds for cell injury and post-traumatic recovery potential.
Project description:A 17-year-old male with diffuse axonal injury (DAI) was referred to our psychiatric clinic with a diagnosis of depression. However, further investigation indicated that he had narcolepsy without cataplexy secondary to DAI. We assessed regional volume alterations in the patient; MRI analysis showed a significant decrease in the volume of the hypothalamus, left amygdala, and brainstem. Our findings add to further understanding of the structural basis of secondary narcolepsy, and may provide basis for future neuroimaging studies on sleep disturbances in traumatic brain injury (TBI).
Project description:ObjectiveDiffuse axonal injury (DAI) is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs) are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T) and 7 T susceptibility weighted imaging (SWI) to evaluate possible diagnostic benefits of ultra-high field (UHF) MRI.Material and methods10 study participants (4 male, 6 female, age range 20-74 years) with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra) and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany) each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC). Count and diameter of TMB were evaluated with Wilcoxon signed rank test.ResultsSusceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25) at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5) at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5) at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005). Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T.Conclusion7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases.
Project description:Background and purposeTraumatic brain injury (TBI), especially the severe TBI are often followed by persistent cognitive sequalae, including decision-making difficulties, reduced neural processing speed and memory deficits. Diffuse axonal injury (DAI) is classified as one of the severe types of TBI. Part of DAI patients are marginalized from social life due to cognitive impairment, even if they are rated as favorable outcome. The purpose of this study was to elucidate the specific type and severity of cognitive impairment in DAI patients with favorable outcome.MethodsThe neurocognition of 46 DAI patients with favorable outcome was evaluated by the Chinese version of the Montreal Cognitive Assessment Basic (MoCA-BC), and the differences in the domains of cognitive impairment caused by different grades of DAI were analyzed after data conversion of scores of nine cognitive domains of MoCA-BC by Pearson correlation analysis.ResultsAmong the 46 DAI patients with favorable outcome, eight had normal cognitive function (MoCA-BC ≥ 26), and 38 had cognitive impairment (MoCA-BC < 26). The MoCA-BC scores were positively correlated with pupillary light reflex (r = 0.361, p = 0.014), admission Glasgow Coma Scale (GCS) (r = 0.402, p = 0.006), and years of education (r = 0.581, p < 0.001). Return of consciousness (r = -0.753, p < 0.001), Marshall CT (r = -0.328, p = 0.026), age (r = -0.654, p < 0.001), and DAI grade (r = -0.403, p = 0.006) were found to be negatively correlated with the MoCA-BC scores. In patients with DAI grade 1, the actually deducted scores (Ads) of memory (r = 0.838, p < 0.001), abstraction (r = 0.843, p < 0.001), and calculation (r = 0.782, p < 0.001) were most related to the Ads of MoCA-BC. The Ads of nine cognitive domains and MoCA-BC were all proved to be correlated, among patients with DAI grade 2. However, In the DAI grade 3 patients, the highest correlation with the Ads of MoCA-BC were the Ads of memory (r = 0.904, p < 0.001), calculation (r = 0.799, p = 0.006), orientation (r = 0.801, p = 0.005), and executive function (r = 0.869, p = 0.001).ConclusionDAI patients with favorable outcome may still be plagued by cognitive impairment, and different grades of DAI cause different domains of cognitive impairment.
Project description:Over the past decade, investigators have attempted to establish the pathophysiological mechanisms by which non-penetrating injuries damage the brain. Several studies have implicated either membrane poration or ion channel dysfunction pursuant to neuronal cell death as the primary mechanism of injury. We hypothesized that traumatic stimulation of integrins may be an important etiological contributor to mild Traumatic Brain Injury. In order to study the effects of forces at the cellular level, we utilized two hierarchical, in vitro systems to mimic traumatic injury to rat cortical neurons: a high velocity stretcher and a magnetic tweezer system. In one system, we controlled focal adhesion formation in neurons cultured on a stretchable substrate loaded with an abrupt, one dimensional strain. With the second system, we used magnetic tweezers to directly simulate the abrupt injury forces endured by a focal adhesion on the neurite. Both systems revealed variations in the rate and nature of neuronal injury as a function of focal adhesion density and direct integrin stimulation without membrane poration. Pharmacological inhibition of calpains did not mitigate the injury yet the inhibition of Rho-kinase immediately after injury reduced axonal injury. These data suggest that integrin-mediated activation of Rho may be a contributor to the diffuse axonal injury reported in mild Traumatic Brain Injury.
Project description:BackgroundDeficits in working memory are commonly observed after traumatic brain injury (TBI), with executive control processes preferentially impacted relative to storage and rehearsal. Previous activation functional neuroimaging investigations of working memory in patients with TBI have reported altered functional recruitment, but methodologic issues including sample heterogeneity (e.g., variability in injury mechanism, severity, neuropathology or chronicity), underspecified definitions of "working memory," and behavioral differences between TBI and control groups have hindered interpretation of these changes.MethodsExecutive control processing in working memory was explicitly engaged during fMRI in a sample of carefully selected chronic-stage, moderate-to-severe TBI patients with diffuse axonal injury (DAI) but without focal lesions.ResultsDespite equivalent task performance, we observed a pattern of greater recruitment of interhemispheric and intrahemispheric regions of prefrontal cortex (PFC) and posterior cortices in our DAI sample. Enhanced activations were recorded in the left dorsolateral PFC (middle frontal gyrus), right ventrolateral PFC (inferior frontal gyrus), bilateral posterior parietal cortices, and left temporo-occipital junction. Region-of-interest analyses confirmed that these effects were robust across individual patients and could not be attributed to load factors or slowed speed of processing.ConclusionsAugmented functional recruitment in the context of normal behavioral performance may be a neural marker of capacity or efficiency limits that can affect functional outcome after traumatic brain injury with diffuse injury.
Project description:Diffuse axonal injury (DAI) results in aberrant functional connectivity and is significantly linked to cognitive impairment. Nevertheless, the network mechanisms influencing neurocognitive function following DAI remain unclear. This study aimed to examine the characteristics of static and dynamic functional network connectivity (FNC) in patients with DAI. Resting-state functional magnetic resonance imaging data were collected from 26 patients with DAI and 27 healthy controls. Resting-state networks were extracted using independent component analysis. We evaluated the connectivity strength through spatial maps and static FNC, and then further dynamic properties were identified using a sliding time-window approach and k-means clustering, and investigated their associations with clinical variables. Patients with DAI showed stronger intra-network spatial maps in the default mode network and subcortical network than healthy controls, but static inter-network functional connectivity remained stable. Furthermore, three recurring states for dynamic connectivity were identified in all participants, and state 1 occurred most frequently in patients with DAI and exhibited higher fractional time, and as well as longer mean dwell time, which was positively associated with MMSE scores. Meanwhile, patients with DAI exhibited mostly increased functional connectivity strength of dynamic FNC in all states, particularly within the default mode network and visual network. These findings suggest that patients with DAI are characterized by altered dynamic FNC and temporal properties, which provide distinct complementary information different from static functional connectivity, and new insights into the neural pathophysiology of DAI associated with cognitive impairment.
Project description:Regarding the determination of the biomechanical parameters in a reliable in vitro cell model for diffuse axonal injury (DAI), our study aimed to demonstrate connections between those parameters and secondary axotomy through examination of morphological alterations under a variety of traumatic conditions. An in vitro cell model for DAI was established in primary cultured mouse neurons by uniaxial mechanical stretching of non-myelinated axons under various traumatic conditions: strain (ε) = 5, 10, 20, and 50%; strain time (t) = 500, 100, and 20 ms; strain rate ranging between 0.1 and 25 s-1. Axonal real strains (strainaxon) were measured as 4.53 ± 0.27, 9.02 ± 0.91, 17.75 ± 1.65, and 41.8 ± 4.4%. Axonal real strain rates (SRaxon) ranged between 0.096 ± 0.0054 and 20.9 ± 2.2 s-1. Results showed there was no obvious abnormality of axons with a lower strain condition (strainaxon < 17.75 ± 1.65%) during the acute phase within 30 min after injury. In contrast, acute axonal degeneration (AAD) was observed in the axons following injury with a higher strain condition (SRaxon > 17.75 ± 1.65%). In addition, the incidence and degree of AAD were closely correlated with strain rate. Specifically, AAD occurred to all axons that were examined, when ε = 50% (strainaxon = 41.8 ± 4.4%) for 20 ms, while no spontaneous rupture was observed in those axons. Besides, the concentration of Ca2+ within the axonal process was significantly increased under such traumatic conditions. Moreover, the continuity of axon cytoskeleton was interrupted, eventually resulting in neuronal death during subacute stage following injury. In this study, we found that there is a minimum strain threshold for the occurrence of AAD in non-myelinated axons of primary cultured mouse neurons, which ranges between 9.02 ± 0.91 and 17.75 ± 1.65%. Basically, the severity of axonal secondary axotomy post DAI is strain rate dependent under a higher strain above the threshold. Hence, a reliable and reproducible in vitro cell model for DAI was established, when ε = 50% (strainaxon = 41.8 ± 4.4%) for 20 ms.