Unknown

Dataset Information

0

Real-time analysis of methylalumoxane formation.


ABSTRACT: Methylalumoxane (MAO), a perennially useful activator for olefin polymerization precatalysts, is famously intractable to structural elucidation, consisting as it does of a complex mixture of oligomers generated from hydrolysis of pyrophoric trimethylaluminum (TMA). Electrospray ionization mass spectrometry (ESI-MS) is capable of studying those oligomers that become charged during the activation process. We have exploited that ability to probe the synthesis of MAO in real time, starting less than a minute after the mixing of H2O and TMA and tracking the first half hour of reactivity. We find that the process does not involve an incremental build-up of oligomers; instead, oligomerization to species containing 12-15 aluminum atoms happens within a minute, with slower aggregation to higher molecular weight ions. The principal activated product of the benchtop synthesis is the same as that observed in industrial samples, namely [(MeAlO)16(Me3Al)6Me]-, and we have computationally located a new sheet structure for this ion 94 kJ mol-1 lower in Gibbs free energy than any previously calculated.

SUBMITTER: Joshi A 

PROVIDER: S-EPMC8178985 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4803472 | biostudies-literature
| S-EPMC9256675 | biostudies-literature
| S-EPMC5589959 | biostudies-literature
| S-EPMC2802827 | biostudies-literature
| S-ECPF-GEOD-44280 | biostudies-other
| S-EPMC7307740 | biostudies-literature
| S-EPMC3773174 | biostudies-literature
| S-EPMC9271212 | biostudies-literature
| S-EPMC8173519 | biostudies-literature
| S-EPMC9853957 | biostudies-literature