Unknown

Dataset Information

0

Evaluating and clustering retrosynthesis pathways with learned strategy.


ABSTRACT: With recent advances in the computer-aided synthesis planning (CASP) powered by data science and machine learning, modern CASP programs can rapidly identify thousands of potential pathways for a given target molecule. However, the lack of a holistic pathway evaluation mechanism makes it challenging to systematically prioritize strategic pathways except for using some simple heuristics. Herein, we introduce a data-driven approach to evaluate the relative strategic levels of retrosynthesis pathways using a dynamic tree-structured long short-term memory (tree-LSTM) model. We first curated a retrosynthesis pathway database, containing 238k patent-extracted pathways along with ∼55 M artificial pathways generated from an open-source CASP program, ASKCOS. The tree-LSTM model was trained to differentiate patent-extracted and artificial pathways with the same target molecule in order to learn the strategic relationship among single-step reactions within the patent-extracted pathways. The model achieved a top-1 ranking accuracy of 79.1% to recognize patent-extracted pathways. In addition, the trained tree-LSTM model learned to encode pathway-level information into a representative latent vector, which can facilitate clustering similar pathways to help illustrate strategically diverse pathways generated from CASP programs.

SUBMITTER: Mo Y 

PROVIDER: S-EPMC8179211 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9564830 | biostudies-literature
| S-EPMC9132021 | biostudies-literature
| S-EPMC5271336 | biostudies-literature
| S-EPMC4465939 | biostudies-literature
| S-EPMC7518125 | biostudies-literature
| S-EPMC7121971 | biostudies-literature
| S-EPMC10390024 | biostudies-literature
| S-EPMC5746854 | biostudies-literature
| S-EPMC5824804 | biostudies-literature
| S-EPMC7146345 | biostudies-literature