Project description:During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens reduce their feeding of larvae and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment with the bumble bee Bombus terrestris, we tested the hypothesis that workers regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage nest-founding queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg laying, and likewise, late-stage nest-founding queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behaviors were negatively correlated. We used Agilent microarrays designed from B. terrestris brain expressed sequenced tags (ESTs) to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect being much stronger in late-stage founding queens. This study provides new insights into how the transition from feeding brood to specialization on reproduction in queen bumble bees is regulated during the nest initiation phase of the colony cycle.
Project description:Here, we examined the transcriptomic changes associated with diapause and CO2 treatment in B. terrestris queens before, during and post diapause and in the short and long term after CO2 treatment
Project description:To explore the neuroendocrine mechanisms underlying caste-specific behavior and its evolution from primitive to advanced eusocial bees, the monoamine levels and expression of genes involved in monoamine production and signaling in the brain were compared between the castes of Bombus ignitus. Higher levels of dopamine and its related substances were found in the brains of newly emerged queens than in the brains of emerged workers. The degree of caste differences in B. ignitus was smaller than that reported in Apis mellifera, indicating a link to different social stages in the two species. There was no differential expression in genes involved in dopamine biosynthesis between castes, suggesting that the high dopamine production in queens was not largely influenced by the expression of these genes at emergence, rather it might be influenced by tyrosine supply. Genome-wide analyses of gene expression by RNA-sequencing indicated that a greater number of genes involved in nutrition were actively expressed in the brains of newly emerged queens in comparison to the emerged workers. Some of the expression was confirmed by real-time quantitative PCR. The signaling pathways driven by the expression of these genes may be associated with dopamine signaling or the parallel activation of dopamine production.
Project description:During the nest-founding phase of the bumble bee colony cycle, queens undergo striking changes in maternal care behavior. Early in the founding phase, prior to the emergence of workers in the nest, queens are reproductive and also provision and feed their offspring. However, later in the founding phase, queens cease feeding offspring and become specialized on reproduction. This transition is synchronized with the emergence of workers in the colony, who assume the task of feeding their siblings. Using a social manipulation experiment, we tested the hypothesis that workers socially regulate the transition from feeding brood to specialization on reproduction in nest-founding bumble bee queens. Consistent with this hypothesis, we found that early-stage queens with workers prematurely added to their nests reduce their brood-feeding behavior and increase egg-laying, and likewise, late-stage queens increase their brood-feeding behavior and decrease egg-laying when workers are removed from their nests. Further, brood-feeding and egg-laying behavior were negatively correlated in these queens. We used an Agilent brain EST-based microarray to explore a second hypothesis, that workers alter brain gene expression in nest-founding queens. We found evidence that brain gene expression in nest-founding queens is altered by the presence of workers, with the effect much stronger in late-stage founding queens. Additionally, expression levels of some genes were correlated with quantitative differences in brood-feeding and egg-laying behavior. This study provides new insights into how the transition from feeding brood to specialization on reproduction in bumble bee queens is regulated during the nest initiation phase of the colony cycle.
Project description:Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-?B mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Project description:The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Project description:Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.
Project description:Cuckoo bumble bees (Psithyrus) (Lepeletier, 1832) (Hymenoptera: Apidae) are a unique lineage of bees that depend exclusively on a host bumble bee species to provide nesting material, nutritional resources, and labor to rear offspring. In this study, we document usurpation incidence and population genetic data of Bombus insularis (Smith, 1861) (Hymenoptera: Apidae), a bumble bee species in the Psithyrus subgenus, on field-deployed B. huntii colonies in northern Utah, United States. Within 12 d of deploying B. huntii Greene, 1860 (Hymenoptera: Apidae) colonies at two field sites, 13 of the 16 colonies contained at least one established B. insularis female. Although our results demonstrate that field-deployed bumble bee colonies are highly susceptible to B. insularis usurpation, applying a fabricated excluder to prevent the inquiline from invading a colony was 100% effective. Sibship analysis using microsatellite genotype data of 59 B. insularis females estimates that they originated from at least 49 unique colonies. Furthermore, sibship analysis found siblings distributed between the field sites that were 7.04 km apart. Our result suggests that B. insularis females have the capacity to disperse across the landscape in search of host colonies at distances of at least 3.52 km and up to 7.04 km. Our study underscores the detrimental impact B. insularis usurpation has on the host bumble bee colony. As B. insularis significantly impacts the success of bumble bee colonies, we briefly discuss how the utilization of excluders may be useful for commercial bumble bee colonies that are used to pollinate open field crops.
Project description:Bumble bees are important crop pollinators and provide important pollination services to their respective ecosystems. Their pollen diet and thus food preferences can be characterized through nucleic acid sequence analysis. We present ITS2 amplicon sequence data from pollen collected by bumble bees. The pollen was collected from six different bumble bee colonies that were placed in independent agricultural landscapes. We compared next-generation (Illumina), i.e., short-read, and third-generation (Nanopore), i.e., MinION, sequencing techniques. MinION data were preprocessed using traditional and Nanopore specific tools for comparative analysis and were evaluated in comparison to short-read sequence data with conventional processing. Based on the results, the dietary diary of bumble bee in the studied landscapes can be identified. It is known that short reads generated by next-generation sequencers have the advantage of higher quality scores while Nanopore yields longer read lengths. We show that assignments to taxonomic units yield comparable results when querying against an ITS2-specific sequence database. Thus, lower sequence quality is compensated by longer read lengths. However, the Nanopore technology is improving in terms of data quality, much cheaper, and suitable for portable applications. With respect to the studied agricultural landscapes we found that bumble bees require higher plant diversity than only crops to fulfill their foraging requirements.
Project description:Gilliamella apicola and Snodgrassella alvi are dominant members of the honey bee (Apis spp.) and bumble bee (Bombus spp.) gut microbiota. We generated complete genomes of the type strains G. apicola wkB1(T) and S. alvi wkB2(T) (isolated from Apis), as well as draft genomes for four other strains from Bombus. G. apicola and S. alvi were found to occupy very different metabolic niches: The former is a saccharolytic fermenter, whereas the latter is an oxidizer of carboxylic acids. Together, they may form a syntrophic network for partitioning of metabolic resources. Both species possessed numerous genes [type 6 secretion systems, repeats in toxin (RTX) toxins, RHS proteins, adhesins, and type IV pili] that likely mediate cell-cell interactions and gut colonization. Variation in these genes could account for the host fidelity of strains observed in previous phylogenetic studies. Here, we also show the first experimental evidence, to our knowledge, for this specificity in vivo: Strains of S. alvi were able to colonize their native bee host but not bees of another genus. Consistent with specific, long-term host association, comparative genomic analysis revealed a deep divergence and little or no gene flow between Apis and Bombus gut symbionts. However, within a host type (Apis or Bombus), we detected signs of horizontal gene transfer between G. apicola and S. alvi, demonstrating the importance of the broader gut community in shaping the evolution of any one member. Our results show that host specificity is likely driven by multiple factors, including direct host-microbe interactions, microbe-microbe interactions, and social transmission.