Project description:The aims of this study were to identify, assess, and summarise available evidence about the effectiveness of static air mattress overlays to prevent pressure ulcers. The primary outcome was the incidence of pressure ulcers. Secondary outcomes included costs and patient comfort. This study was a systematic review. Six electronic databases were consulted: Cochrane Library, EMBASE, PubMed (Medline), CINAHL (EBSCOhost interface), Science direct, and Web of Science. In addition, a hand search through reviews, conference proceedings, and the reference lists of the included studies was performed to identify additional studies. Potential studies were reviewed and assessed by 2 independent authors based on the title and abstract. Decisions regarding inclusion or exclusion of the studies were based on a consensus between the authors. Studies were included if the following criteria were met: reporting an original study; the outcome was the incidence of pressure ulcer categories I to IV when using a static air mattress overlay and/or in comparison with other pressure-redistribution device(s); and studies published in English, French, and Dutch. No limitation was set on study setting, design, and date of publication. The methodological quality assessment was evaluated using the Critical Appraisal Skills Program Tool. Results were reported in a descriptive way to reflect the exploratory nature of the review. The searches included 13 studies: randomised controlled trials (n = 11) and cohort studies (n = 2). The mean pressure ulcer incidence figures found in the different settings were, respectively, 7.8% pressure ulcers of categories II to IV in nursing homes, 9.06% pressure ulcers of categories I to IV in intensive care settings, and 12% pressure ulcers of categories I to IV in orthopaedic wards. Seven comparative studies reported a lower incidence in the groups of patients on a static air mattress overlay. Three studies reported a statistical (P < .1) lower incidence compared with a standard hospital mattress (10 cm thick, density 35 kg/m3 ), a foam mattress (15 cm thick), and a viscoelastic foam mattress (15 cm thick). No significant difference in incidence, purchase costs, and patient comfort was found compared with dynamic air mattresses. This review focused on the effectiveness of static air mattress overlays to prevent pressure ulcers. There are indications that these mattress overlays are more effective in preventing pressure ulcers compared with the use of a standard mattress or a pressure-reducing foam mattress in nursing homes and intensive care settings. However, interpretation of the evidence should be performed with caution due to the wide variety of methodological and/or reporting quality levels of the included studies.
Project description:The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.
Project description:When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this 'pressure equalisation' approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure. A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPa)-a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid. Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.
Project description:The generation of electrical voltage through the flow of an electrolyte over a charged surface may be used for energy transduction. Here, we show that enhanced electrical potential differences (i.e., streaming potential) may be obtained through the flow of salt water on liquid-filled surfaces that are infiltrated with a lower dielectric constant liquid, such as oil, to harness electrolyte slip and associated surface charge. A record-high figure of merit, in terms of the voltage generated per unit applied pressure, of 0.043 mV Pa-1 is obtained through the use of the liquid-filled surfaces. In comparison with air-filled surfaces, the figure of merit associated with the liquid-filled surface increases by a factor of 1.4. These results lay the basis for innovative surface charge engineering methodology for the study of electrokinetic phenomena at the microscale, with possible application in new electrical power sources.
Project description:Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.