Project description:Although COVID-19 is predominantly a respiratory disease, it is known to affect multiple organ systems. In this article, we highlight the impact of SARS-CoV-2 (the coronavirus causing COVID-19) on the central nervous system as there is an urgent need to understand the longitudinal impacts of COVID-19 on brain function, behaviour and cognition. Furthermore, we address the possibility of intergenerational impacts of COVID-19 on the brain, potentially via both maternal and paternal routes. Evidence from preclinical models of earlier coronaviruses has shown direct viral infiltration across the blood-brain barrier and indirect secondary effects due to other organ pathology and inflammation. In the most severely ill patients with pneumonia requiring intensive care, there appears to be additional severe inflammatory response and associated thrombophilia with widespread organ damage, including the brain. Maternal viral (and other) infections during pregnancy can affect the offspring, with greater incidence of neurodevelopmental disorders, such as autism, schizophrenia and epilepsy. Available reports suggest possible vertical transmission of SARS-CoV-2, although longitudinal cohort studies of such offspring are needed. The impact of paternal infection on the offspring and intergenerational effects should also be considered. Research targeted at mechanistic insights into all aspects of pathogenesis, including neurological, neuropsychiatric and haematological systems alongside pulmonary pathology, will be critical in informing future therapeutic approaches. With these future challenges in mind, we highlight the importance of national and international collaborative efforts to gather the required clinical and preclinical data to effectively address the possible long-term sequelae of this global pandemic, particularly with respect to the brain and mental health.
Project description:IntroductionDespite numerous studies regarding neurological manifestations and complications of COVID-19, only a few cases of neurological consequences following complete recovery from SARS-CoV-2 infection have been described.ObjectivesThe current study aims to present a quantitative meta-analysis of published studies regarding the post-infectious neurological complications of COVID-19.Data sourcesThe Web of Science, PubMed, MEDLINE on OVID, and Google scholar were searched for English-language researches published after January 1, 2020.ResultThe review of the literature revealed 60 cases - of which 40 (66.7%) cases were male, and 18 (30%) were female. The average age was 44.95 years. Overall, 17 (28.3%) patients had comorbid conditions. Twenty-four (40%) patients were hospitalized during an active COVID-19 infection. The average interval from the COVID-19 infection to the onset of neurological sequelae was 33.2 days. Guillain-Barre syndrome was the most commonly reported neurological condition (15, 25%).ConclusionDespite recovery from acute infection, the pandemic highlights the significance of ongoing, comprehensive follow-up of all COVID-19 patients - even those initially were believed to be asymptomatic.
Project description:The SARS-CoV-2 virus, which causes Coronavirus disease 2019 (COVID-19), has resulted in millions of worldwide deaths. When the SARS-CoV-2 virus emerged from Wuhan, China in December 2019, reports of patients with COVID-19 revealed that hospitalized patients had acute changes in mental status, cognition, and encephalopathy. Neurologic complications can be a consequence from overall severity of the systemic infection, direct viral invasion of the SARS-CoV-2 virus in the central nervous system, and possible immune mediated mechanisms. We will examine the landscape regarding this topic in this review in addition to current understandings of COVID-19 and hemostasis, treatment, and prevention, as well as vaccination.
Project description:ObjectiveThe objective of this study was to assess the impact of treatment with dexamethasone, remdesivir or both on neurological complications in acute coronavirus diease 2019 (COVID-19).MethodsWe used observational data from the International Severe Acute and emerging Respiratory Infection Consortium World Health Organization (WHO) Clinical Characterization Protocol, United Kingdom. Hospital inpatients aged ≥18 years with laboratory-confirmed severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection admitted between January 31, 2020, and June 29, 2021, were included. Treatment allocation was non-blinded and performed by reporting clinicians. A propensity scoring methodology was used to minimize confounding. Treatment with remdesivir, dexamethasone, or both was assessed against the standard of care. The primary outcome was a neurological complication occurring at the point of death, discharge, or resolution of the COVID-19 clinical episode.ResultsOut of 89,297 hospital inpatients, 64,088 had severe COVID-19 and 25,209 had non-hypoxic COVID-19. Neurological complications developed in 4.8% and 4.5%, respectively. In both groups, neurological complications were associated with increased mortality, intensive care unit (ICU) admission, worse self-care on discharge, and time to recovery. In patients with severe COVID-19, treatment with dexamethasone (n = 21,129), remdesivir (n = 1,428), and both combined (n = 10,846) were associated with a lower frequency of neurological complications: OR = 0.76 (95% confidence interval [CI] = 0.69-0.83), OR = 0.69 (95% CI = 0.51-0.90), and OR = 0.54 (95% CI = 0.47-0.61), respectively. In patients with non-hypoxic COVID-19, dexamethasone (n = 2,580) was associated with less neurological complications (OR = 0.78, 95% CI = 0.62-0.97), whereas the dexamethasone/remdesivir combination (n = 460) showed a similar trend (OR = 0.63, 95% CI = 0.31-1.15).InterpretationTreatment with dexamethasone, remdesivir, or both in patients hospitalized with COVID-19 was associated with a lower frequency of neurological complications in an additive manner, such that the greatest benefit was observed in patients who received both drugs together. ANN NEUROL 2023;93:88-102.
Project description:This review provides an overview of studies and case reports of neurological and neuromuscular complications associated with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and coronavirus disease 2019 (COVID-19) and describes the possible mechanisms of viral transmission to the central nervous system (CNS). Coronavirus family has shown central and peripheral nervous system tropism in multiple retrospective studies and case reports from different parts of the world. To date, the reported cases of neurological and neuromuscular complications associated with coronaviruses, especially COVID-19, are increasing. Neurological and neuromuscular symptoms and complications ranging from headache and anosmia to more severe encephalitis and stroke have been reported in many studies. However, the neurotropism mechanism of coronaviruses is still not clear and the evidence of central nervous system (CNS) involvement is limited despite the number of studies that attempted to illustrate the possible CNS invasion mechanisms. The reported neurological complications of coronaviruses are summarized in this article.
Project description:The Coronavirus disease due to SARS-CoV-2 emerged in Wuhan city, China in December 2019 and rapidly spread to more than 200 countries as a global health pandemic. There are more than 3.5 million confirmed cases and around 165,000 to 243,000 fatalities. The primary manifestation is respiratory and cardiac but neurological features are also being reported in the literature as case reports and case series. The most common reported symptoms to include headache and dizziness followed by encephalopathy and delirium. Among the complications noted are Cerebrovascular accident, Guillian barre syndrome, acute transverse myelitis, and acute encephalitis. The most common peripheral manifestation was hyposmia. It is further noted that sometimes the neurological manifestations can precede the typical features like fever and cough and later on typical manifestations develop in these patients. Hence a high index of suspicion is required for timely diagnosis and isolation of cases to prevent the spread in neurology wards. We present a narrative review of the neurological manifestations and complications of COVID-19. Our aim is to update the neurologists and physicians working with suspected cases of COVID-19 about the possible neurological presentations and the probable neurological complications resulting from this novel virus infection.
Project description:Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.
Project description:Although systemic inflammation and pulmonary complications increase the mortality rate in COVID-19, a broad spectrum of cardiovascular and neurological complications can also contribute to significant morbidity and mortality. The molecular mechanisms underlying cardiovascular and neurological complications during and after SARS-CoV-2 infection are incompletely understood. Recently reported perturbations of the epitranscriptome of COVID-19 patients indicate that mechanisms including those derived from RNA modifications and non-coding RNAs may play a contributing role in the pathogenesis of COVID-19. In this review paper, we gathered recently published studies investigating (epi)transcriptomic fluctuations upon SARS-CoV-2 infection, focusing on the brain-heart axis since neurological and cardiovascular events and their sequelae are of utmost prevalence and importance in this disease.
Project description:ObjectiveTo evaluate how the SARS-COV2 is able to affect the nervous system, the main neurological manifestation, and the treatment used, including neurorehabilitation.MethodsStudies performed during the current year that fulfilled inclusion criteria were selected from PubMed, Scopus, Cochrane, and Web of Sciences databases. The search combined the terms "Covid 19," "rehabilitation/treatment," and "neurological complications."ResultsThe exact route by which SARS-CoV-2 can penetrate the CNS is still unknown, although a possible retrograde transynaptic pathway from peripheral nerve endings, and/or through the olfactory bulb, have been suggested. An early management of COVID-19 by a multiprofessional team is fundamental to avoid long term sequaele. Rehabilitation is recommended to improve respiratory and cardiac function, as well as to avoid long term neurological complications.ConclusionsAs no specific conclusions in term of prognosis and treatment could be done, research and consensus paper are needed to provide NeuroCovid patients with the best treatment options, including neurorehabilitation.
Project description:ObjectiveTo study the frequency of neurological symptoms and complications in COVID-19 patients in a systematic review of the literature.MethodsRelevant studies were identified through electronic explorations of PubMed, medRxiv, and bioRxiv. Besides, three Chinese databases were searched. A snowballing method searching the bibliographies of the retrieved references was applied to identify potentially relevant articles. Articles published within 1 year prior to April 20th, 2020, were screened with no language restriction imposed. Databases were searched for terms related to SARS-CoV-2/COVID-19 and neurological manifestations, using a pre-established protocol registered on the International Prospective Register of Systematic Reviews database (ID: CRD42020187994).ResultsA total of 2441 articles were screened for relevant content, of which 92 full-text publications were included in the analyses of neurological manifestations of COVID-19. Headache, dizziness, taste and smell dysfunctions, and impaired consciousness were the most frequently described neurological symptoms, the latter more often among patients with a severe or critical disease course. To date, only smaller cohort studies or single cases have reported cerebrovascular events, seizures, meningoencephalitis, and immune-mediated neurological diseases, not suitable for quantitative analysis.ConclusionThe most frequent neurological symptoms reported in association with COVID-19 are non-specific for the infection with SARS-CoV-2. Although SARS-CoV-2 may have the potential to gain direct access to the nervous system, so far, SARS-CoV-2 was detected in the cerebrospinal fluid in two cases only. Standardized international registries are needed to clarify the clinical relevance of the neuropathogenicity of SARS-CoV-2 and to elucidate a possible impact of SARS-CoV-2 infection on common neurological disease, such as Alzheimer's, Parkinson's disease or multiple sclerosis.