ABSTRACT: Chinese indigenous sheep can be classified into three types based on tail morphology: fat-tailed, fat-rumped, and thin-tailed sheep, of which the typical breeds are large-tailed Han sheep, Altay sheep, and Tibetan sheep, respectively. To unravel the molecular genetic basis underlying the phenotypic differences among Chinese indigenous sheep with these three different tail types, we used ovine high-density 600K single nucleotide polymorphism (SNP) arrays to detect genome-wide associations, and performed general linear model analysis to identify candidate genes, using genotyping technology to validate the candidate genes. Tail type is an important economic trait in sheep. However, the candidate genes associated with tail type are not known. The objective of this study was to identify SNP markers, genes, and chromosomal regions related to tail traits. We performed a genome-wide association study (GWAS) using data from 40 large-tailed Han sheep, 40 Altay sheep (cases) and 40 Tibetan sheep (controls). A total of 31 significant (P<0.05) SNPs associated with tail-type traits were detected. For significant SNPs' loci, we determined their physical location and performed a screening of candidate genes within each region. By combining information from previously reported and annotated biological functional genes, we identified SPAG17, Tbx15, VRTN, NPC2, BMP2 and PDGFD as the most promising candidate genes for tail-type traits. Based on the above identified candidate genes for tail-type traits, BMP2 and PDGFD genes were selected to investigate the relationship between SNPs within the tails in the Altay and Tibetan populations. rs119 T>C in exon1 of the BMP2 gene and one SNP in exon4 (rs69 C>A) of the PDGFD gene were detected. rs119 was of the TT genotype in Altay sheep, while it was of the CC genotype in Tibetan sheep. On rs69 of the PDGFD gene, Altay sheep presented with the CC genotype; however, Tibetan sheep presented with the AA genotype.