Project description:Only case reports and small clinical series report the effects of booster vaccination with BNT162b2 in patients with rheumatoid arthritis (RA). We studied 200 patients with RA in clinical remission evaluated with the DAS28. All patients were vaccinated for SARS CoV-2 with the BNT162b2 mRNA vaccine. The value of anti-SARS-CoV 2 Spike RBD IgG antibodies was determined at T1 (3 weeks after first vaccination) and T2 (3 weeks after booster). In addition, patients underwent assessment of lymphocyte subpopulations by flow cytometry analysis before starting the vaccination cycle (T0). Furthermore, the serum antibody levels of 96 health care workers (HCWs) were analyzed for comparison. DAS28 values at T0, T1, and T2 indicated remission or low disease activity in all patients. Levels of anti-SARS CoV-2 IgG at T1 were higher in HCWs than in patients' groups: 1562.00 BAU WHO/mL [975.00-1632.00] vs 416.00 BAU WHO/mL [110.00, 1581.00], p <0.001. Anti-SARS COV2 IgG levels at T1 and at T2 were slightly lower in patients taking b/tsDMARDs than in patients under csDMARDs. Regression analysis evidenced age, treatment with abatacept (ABA), JAK inhibitors, and rituximab (RTX) as negative predictors of higher anti-SARS CoV-2 IgG levels at T1. Moreover, treatment with anti-IL6, anti-JAK, and anti-tumor necrosis factor (TNF) emerged as positive predictors of higher levels of anti-SARS CoV-2 IgG at T2. Our data show that despite the booster vaccine with BNT162b2, seroconversion in patients with rheumatoid arthritis is influenced by the background therapy, particularly for patients being treated with ABA and RTX.
Project description:Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.
Project description:We have designed a prospective study aiming to monitor the immune response in 178 health care workers six months after BNT162b2 mRNA vaccination. The humoral immune response of all subjects was evaluated by chemiluminescence (CMIA); in 60 serum samples, a live virus-based neutralization assay was also tested. Moreover, 6 months after vaccination, B- and T-cell subsets from 20 subjects were observed by FACS analysis after restimulation with the trimeric SARS-CoV-2 Spike protein as an antigen, thus mimicking reinfection in vitro. A significant decrease of circulating IgG levels and neutralizing antibodies over time were observed. Moreover, six months after vaccination, a variable T-cell immune response after in vitro antigen stimulation of PBMC was observed. On the contrary, the analysis of B-cell response showed a shift from unswitched to switched memory B-cells and an increase of Th17 cells. Although the variability of the CD4+ and CD8+ immune response and an antibody decline was observed among vaccinated subjects, the increase of switched memory B-cells and Th17 cells, correlating with the presence of neutralizing antibodies, opened the debate on the correct timing of vaccination.
Project description:Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that causes debilitating swelling and destruction of the joints. People with RA are treated with drugs that actively suppress one or more parts of their immune system, and these may alter the response to vaccination against SARS-CoV-2. In this study, we analyzed blood samples from a cohort of patients with RA after receiving a 2-dose mRNA COVID-19 vaccine regimen. Our data show that individuals on the cytotoxic T lymphocyte antigen 4-Ig therapy abatacept had reduced levels of SARS-CoV-2-neutralizing antibodies after vaccination. At the cellular level, these patients showed reduced activation and class switching of SARS-CoV-2-specific B cells, as well as reduced numbers and impaired helper cytokine production by SARS-CoV-2-specific CD4+ T cells. Individuals on methotrexate showed similar but less severe defects in vaccine response, whereas individuals on the B cell-depleting therapy rituximab had a near-total loss of antibody production after vaccination. These data define a specific cellular phenotype associated with impaired response to SARS-CoV-2 vaccination in patients with RA on different immune-modifying therapies and help inform efforts to improve vaccination strategies in this vulnerable population.
Project description:Patients receiving anti-CD20 antibodies showed limited efficacy of a booster dose of BNT162b2. Patients with lymphomas combine such immunotherapies with cytotoxic chemotherapies that could result in an even greater alteration of the immune response to vaccination. We report here the impact of a third vaccine dose on T cell specific responses in a small cohort of patients treated in our center by anti-CD20 therapies and cytotoxic chemotherapies for lymphoid malignancies. Our results showed that a third dose in these severely immune suppressed patients could improve the expansion on CD4+Th1+T cell responses while the effect CD8 + T cell responses was marginal.
Project description:ObjectiveTo assess the kinetics of the humoral and cell-mediated responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in rheumatoid arthritis (RA) patients treated with different immunosuppressive therapies.MethodsFollowing vaccine completed schedule, health care workers (HCWs, n = 49) and RA patients (n = 35) were enrolled at 5 weeks (T1) and 6 months (T6) after the first dose of BNT162b2-mRNA vaccination. Serological response was assessed by quantifying anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG) and SARS-CoV-2 neutralizing antibodies, while cell-mediated response was assessed by a whole-blood test quantifying the interferon (IFN)-γ response to spike peptides. B-cell phenotype and IFN-γ-specific T-cell responses were evaluated by flow cytometry.ResultsAfter 6 months, anti-RBD antibodies were still detectable in 91.4% of RA patients, although we observed a significant reduction of the titer in patients under Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)-Ig [median: 16.4 binding antibody units (BAU)/ml, interquartile range (IQR): 11.3-44.3, p < 0.0001] or tumor necrosis factor (TNF)-α inhibitors (median: 26.5 BAU/ml, IQR: 14.9-108.8, p = 0.0034) compared to controls (median: 152.7 BAU/ml, IQR: 89.3-260.3). All peripheral memory B-cell (MBC) subpopulations, in particular, the switched IgG+ MBCs (CD19+CD27+IgD-IgM-IgG+), were significantly reduced in RA subjects under CTLA-4-Ig compared to those in HCWs (p = 0.0012). In RA patients, a significantly reduced anti-RBD IgG titer was observed at T6 vs. T1, mainly in those treated with CTLA-4-Ig (p = 0.002), interleukin (IL)-6 inhibitors (p = 0.015), and disease-modifying antirheumatic drugs (DMARDs) ± corticosteroids (CCSs) (p = 0.015). In contrast, a weak nonsignificant reduction of the T-cell response was reported at T6 vs. T1. T-cell response was found in 65.7% of the RA patients at T6, with lower significant magnitude in patients under CTLA-4-Ig compared to HCWs (p < 0.0001). The SARS-CoV-2 IFN-γ-S-specific T-cell response was mainly detected in the CD4+ T-cell compartment.ConclusionsIn this study, in RA patients after 6 months from COVID-19 vaccination, we show the kinetics, waning, and impairment of the humoral and, to a less extent, of the T-cell response. Similarly, a reduction of the specific response was also observed in the controls. Therefore, based on these results, a booster dose of the vaccine is crucial to increase the specific immune response regardless of the immunosuppressive therapy.