Project description:Patients suffering from autoimmune hepatitis, a chronic immune-mediated liver disease with an incidence of 0.9 to 2 per 100,000 population per year in Europe, are considered to have a particularly increased risk for coronavirus disease 2019 (Covid-19)-associated hospitalization and death.1,2 Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccination provides an essential tool to reduce morbidity and mortality in this cohort. However, a large multicenter study in China has shown a lower immunogenic response to inactivated whole-virion SARS-CoV-2 vaccines of chronic liver disease patients in comparison with the healthy population.3 Furthermore, reports from inflammatory bowel diseases or rheumatic disorders showed a reduced serologic response in patients taking glucocorticoids or thiopurine.4,5 The decrease in vaccine-induced antibodies over time, as well as the emergence of variants of concern, led to the recommendation of an additional vaccination in immunocompromised patients.
Project description:BackgroundLarge clinical trials have demonstrated the overall safety of vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, reports have emerged of autoimmune phenomena, including vaccine-associated myocarditis, immune thrombocytopenia, and immune thrombotic thrombocytopenia.Case presentationHere we present a novel case of a young woman who developed life-threatening autoimmune hemolytic anemia (AIHA) after her first dose of a SARS-CoV-2 mRNA vaccine. Notably, initial direct antiglobulin testing was negative using standard anti-IgG reagents, which are "blind" to certain immunoglobulin (IgG) isotypes. Further testing using an antiglobulin reagent that detects all IgG isotypes was strongly positive and confirmed the diagnosis of AIHA. The patient required transfusion with 13 units of red blood cells, as well as treatment with corticosteroids, rituximab, mycophenolate mofetil, and immune globulin.ConclusionAs efforts to administer SARS-CoV-2 vaccines continue globally, clinicians must be aware of potential autoimmune sequelae of these therapies.
Project description:Background & aimsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) continues to have a devastating impact across the globe. However, little is known about the disease course in patients with autoimmune hepatitis (AIH).MethodsData for patients with AIH and SARS-CoV-2 infection were combined from 3 international reporting registries and outcomes were compared to those in patients with chronic liver disease of other aetiology (non-AIH CLD) and to patients without liver disease (non-CLD).ResultsBetween 25th March and 24th October 2020, data were collected for 932 patients with CLD and SARS-CoV-2 infection including 70 with autoimmune hepatitis (AIH). Fifty-eight (83%) patients with AIH were taking ≥1 immunosuppressive drug. There were no differences in rates of major outcomes between patients with AIH and non-AIH CLD, including hospitalization (76% vs. 85%; p = 0.06), intensive care unit admission (29% vs. 23%; p = 0.240), and death (23% vs. 20%; p = 0.643). Factors associated with death within the AIH cohort included age (odds ratio [OR] 2.16/10 years; 1.07-3.81), and Child-Pugh class B (OR 42.48; 4.40-409.53), and C (OR 69.30; 2.83-1694.50) cirrhosis, but not use of immunosuppression. Propensity score matched (PSM) analysis comparing patients with AIH with non-AIH CLD demonstrated no increased risk of adverse outcomes including death (+3.2%; -9.2%-15.7%). PSM analysis of patients with AIH vs. non-CLD (n = 769) demonstrated increased risk of hospitalization with AIH (+18.4%; 5.6-31.2%), but equivalent risk of all other outcomes including death (+3.2%; -9.1%-15.6%).ConclusionPatients with AIH were not at increased risk of adverse outcomes despite immunosuppressive treatment compared to other causes of CLD and to matched cases without liver disease.Lay summaryLittle is known about the outcomes of COVID-19 in patients with autoimmune hepatitis (AIH), a rare chronic inflammatory liver disease. This study combines data from 3 large registries to describe the course of COVID-19 in this patient group. We show that AIH patients do not appear to have an increased risk of death from COVID-19 compared to patients with other forms of liver disease and compared to patients without liver disease, despite the use of medications which suppress the immune system.
Project description:Background/aimsIn this observational study, we explored the humoral and cellular immune response to SARS-CoV-2 vaccination in patients with autoimmune hepatitis (AIH) and patients with cholestatic autoimmune liver disease (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]).MethodsAnti-SARS-CoV-2 antibody titers were determined using the DiaSorin LIAISON and Roche immunoassays in 103 AIH, 64 PSC, and 61 PBC patients and 95 healthy controls >14 days after the second COVID-19 vaccination. The spike-specific T-cell response was assessed using an activation-induced marker assay (AIM) in a subset of individuals.ResultsPrevious SARS-CoV-2 infection was frequently detected in AIH but not in PBC/PSC (10/112 (9%), versus 4/144 (2.7%), p = 0.03). In the remaining patients, seroconversion was measurable in 97% of AIH and 99% of PBC/PSC patients, respectively. However, in 13/94 AIH patients antibody levels were lower than in any healthy control, which contributed to lower antibody levels of the total AIH cohort when compared to PBC/PSC or controls (641 vs. 1020 vs. 1200 BAU/ml, respectively). Notably, antibody levels were comparably low in AIH patients with (n = 85) and without immunosuppression (n = 9). Also, antibody titers significantly declined within 7 months after the second vaccination. In the AIM assay of 20 AIH patients, a spike-specific T-cell response was undetectable in 45% despite a positive serology, while 87% (13/15) of the PBC/PSC demonstrated a spike-specific T-cell response.ConclusionPatients with AIH show an increased SARS-CoV-2 infection rate as well as an impaired B- and T-cell response to SARS-CoV-2 vaccine compared to PBC and PSC patients, even in the absence of immunosuppression. Thus, antibody responses to vaccination in AIH patients need to be monitored and early booster immunizations considered in low responders.
Project description:Autoimmune haemolytic anaemia (AIHA) and immune thrombocytopenia (ITP) are two uncommon haematologic autoimmune conditions that can rarely arise secondary to vaccination. Prior studies using the US Centers for Disease Control's (CDC) Vaccine Adverse Event Reporting System (VAERS) have demonstrated this infrequency, but contemporary data as well as comparison with current information regarding SARS-CoV-2 vaccination has not been assessed. In this study, we reviewed VAERS database reports from 1990 to 2022 to characterize the incidence and clinical and laboratory findings of non-SARS-CoV-2-associated AIHA and ITP and SARS-CoV-2 vaccine-associated AIHA and ITP. We discovered a total of 863 AIHA and ITP reports following vaccination with 15 non-SARS-CoV-2 and four SARS-CoV-2 vaccines submitted to the CDC VAERS database. AIHA and ITP reporting was low for both groups, with a large proportion excluded due to a lack of clinical details. ITP was reported the most frequently in both groups and was significantly more common with measles-mumps-rubella (MMR) vaccination (p < 0.001) in the non-SARS-CoV-2 group. AIHA and ITP cases were higher in the SARS-CoV-2 vaccine group, though ultimately still very infrequent. Autoimmune haematologic disease is vanishingly rare after immunization and rates are lower than in the general population according to passive reporting.
Project description:Autoimmunity, hyperstimulation of the immune system, can be caused by a variety of reasons. Viruses are thought to be important environmental elements that contribute to the development of autoimmune antibodies. It seems that viruses cause autoimmunity with mechanisms such as molecular mimicry, bystander activation of T cells, transient immunosuppression, and inflammation, which has also been seen in post-Covid-19 autoimmunity. Infection of respiratory epithelium by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates the immune response, triggers both innate and acquired immunity that led to the immune system's hyperactivation, excessive cytokine secretion known as "cytokine storm," and finally acute respiratory distress syndrome (ARDS) associated with high mortality. Any factor in the body that triggers chronic inflammation can contribute to autoimmune disease, which has been documented during the Covid-19 pandemic. It has been observed that some patients produce autoantibody and autoreactive CD4+ and CD8+ T cells, leading to the loss of self-tolerance. However, there is a scarcity of evidence defining the precise molecular interaction between the virus and the immune system to elicit autoreactivity. Here, we present a review of the relevant immunological findings in Covid-19 and the current reports of autoimmune disease associated with the disease.