Project description:Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human-machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human-machine interfaces.
Project description:In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7-11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15-26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7-25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Project description:Window coatings with dynamic solar transmittance represent an excellent opportunity to reduce building heating and cooling loads, which account for >40% of energy consumed by the built environment. In particular, inorganic vanadium dioxide-based thermochromic coatings offer long lifetimes (>30 years) and can be passively integrated into a window system without additional electronics or power requirements. However, their limited solar modulation depth and wide phase-change hysteresis have traditionally restricted their ability to adapt to changing weather conditions. Here, we derive an optical performance limit for thin film vanadium dioxide coatings, which we find to be far beyond the current literature. Furthermore, we experimentally demonstrate a solution-processed multilayer thin film coating that uses temperature-dependent optical impedance matching to approach the optical performance limit. The thin film coating demonstrated has a record solar transmittance modulation of 21.8% while maintaining a high level of visible transparency (?50%) and minimal hysteresis (?10 °C). This work represents a step-change in thin film thermochromic window coatings and, as a result, establishes planar thin film vanadium dioxide as the most viable morphology for high-performance thermochromic windows.
Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using from maize silks obtained at 2-3 days after emergence. High-throughput sequencing using the Illumina platform resulted in the generation of ~14 million high quality reads, corresponding to ~7 million reads for each sample, from which 76% aligned to the maize genome.
Project description:Light-driven phase change materials (PCMs) have received significant attention due to their capacity to convert visible light into thermal energy, storing it as latent heat. However, continuous photo-thermal conversion can cause the PCMs to reach high thermal equilibrium temperatures after phase transition. In our study, a novel light-driven phase change material system with temperature-control properties was constructed using a thermochromic compound. Thermochromic phase change materials (TC-PCMs) were prepared by introducing 2-anilino-6-dibutylamino-3-methylfluoran (ODB-2) and bisphenol A (BPA) into 1-hexadecanol (1-HD) in various proportions. Photo-thermal conversion performance was investigated with solar radiation (low power of 0.09 W/cm2) and a xenon lamp (at a high power of 0.14 W/cm2). The TC-PCMs showed a low equilibrium temperature due to variations in absorbance. Specifically, the temperature of TC-PCM180 (ODB-2, bisphenol A and 1-HD ratio 1:2:180) could stabilize at 54 °C approximately. TC-PCMs exhibited reversibility and repeatability after 20 irradiation and cooling cycles.
Project description:In this study, thermochromic photonic gels were fabricated using 2-hydroxyethyl methacrylate (HEMA) as a hydrogel building block, and 4-Acryloyl morpholine (ACMO) and N-isopropylacrylamide (NIPAAM) as thermoresponsive monomers with different critical solution temperature behaviors. Rapid photopolymerization of opal-templated monomer mixtures of varying ACMO contents formed five individual thermochromic inverse opal photonic gels integrated on a single substrate. With temperature variation from 10 °C to 80 °C, the changes in reflective colors and reflectance spectra of the respective thermochromic gels were noted, and λpeak changes were plotted. Because NIPAAM exhibits a lower critical solution temperature (LCST) at 33 °C, the NIPAAM-only gel showed a steep slope for dλpeak/dT below 40 °C, whereas the slope became flatter at high temperatures. As the ACMO content increased in the thermochromic gel, the curve of dλpeak/dT turned out to be gradual within the investigated temperature range, exhibiting the entire visible range of colors. The incorporation of ACMO in NIPAAM-based thermochromic gels therefore enabled a better control of color changes at a relatively high-temperature regime compared to a NIPAAM-only gel. In addition, ACMO-containing thermochromic gels exhibited a smaller hysteresis of λpeak for the heating and cooling cycle.
Project description:Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite (STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity (~ 30 W m-1 K-1), low thermal contact resistance (~ 12 mm2 K W-1, 4-5 times lower than that of silver paste), strong yet sustainable adhesion forces (~ 4607 J m-2, 2220 J m-2 greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20 °C than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.
Project description:To gain a deeper understanding of the atopic dermatitis (AD) skin transcriptome and the effects of systemic treatment with dupilumab and cyclosporine, we conducted a gene expression study of AD using mRNA-Seq data generated from lesional and non-lesional skin biopsies collected from patients included in the TREATgermany registry. We are able to provide deep characterisation of AD skin transcriptomic signatures by using an assortment of bioinformatic approaches such as differential expression, co-expression network and pathway enrichment analysis.
Project description:Several lines of evidence point to the existence of a visual processing advantage for horizontal over vertical orientations. We investigated whether such a horizontal advantage exists in the context of top-down visual search. Inspired by change detection studies, we created displays where a dynamic target -- a horizontal or a vertical group of five dots that changed contrast synchronously -- was embedded within a randomly flickering grid of dots. The display size (total dots) varied across trials, and the orientation of the target was constant within interleaved blocks. As expected, search was slow and inefficient. Importantly, participants were almost a second faster finding horizontal compared to vertical targets. They were also more efficient and more accurate during horizontal search. Such findings establish that the attentional templates thought to guide search for known targets can exhibit strong orientation anisotropies. We discuss possible underlying mechanisms and how these might be explored in future studies.
Project description:Electrochromism refers to the persistent and reversible change in color by applying an electric field. The phenomenon involves the insertion and extraction of electrons and ions within the active material. There is a keen interest in electrochromic (EC) materials, since they exhibit a wide range of potential applications. In recent years, transition-metal oxides have been widely investigated as EC materials due to their low power requirement, high coloration efficiency, and memory effect under an open-circuit condition. Nickel oxide (NiO), a p-type wide band gap semiconductor, exhibits attractive features such as a high color contrast ratio, good chemical stability, cost-effectiveness, and good compatibility with the cathodically coloring tungsten oxide. NiO thin films have been fabricated by various methods, but these are not cost-effective, scalable, or suitable for flexible applications. With the increasing demand for flexible and soft EC devices, it is essential to find routes to fabricate NiO thin films at lower temperatures. In this work, a NiO/Ni(OH)2-based thin EC layer on fluorine-doped tin oxide-coated glass is developed via an electroless nickel (EN) deposition route, followed by room-temperature electrochemical oxidation. The deposition time is optimized to control the film thickness. The EC performance is investigated in an aqueous alkaline electrolyte (1 M KOH) by means of cyclic voltammetry, chronoamperometry, and transmittance measurements. Both the as-deposited and annealed films, after electrochemical oxidation, exhibit excellent EC properties with an optical modulation of approximately 64% (at 550 nm) and good response times of approximately 3 s (coloration) and 14 s (bleaching). A 2 × 2 display obtained by patterning the EN deposition is also demonstrated as part of this work.