Project description:The novel coronavirus SARS CoV-2 responsible for the COVID-19 pandemic and SARS CoV-1 responsible for the SARS epidemic of 2002-2003 share an ancestor yet evolved to have much different transmissibility and global impact 1. A previously developed thermodynamic model of protein conformations hypothesized that SARS CoV-2 is very close to a new thermodynamic critical point, which makes it highly infectious but also easily displaced by a spike-based vaccine because there is a tradeoff between transmissibility and robustness 2. The model identified a small cluster of four key mutations of SARS CoV-2 that predicts much stronger viral attachment and viral spreading compared to SARS CoV-1. Here we apply the model to the SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2)3 and predict, using no free parameters, how the new mutations will not diminish the effectiveness of current spike based vaccines and may even further enhance infectiousness by augmenting the binding ability of the virus.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, which has been a topic of major concern for global human health. The challenge to restrain the COVID-19 pandemic is further compounded by the emergence of several SARS-CoV-2 variants viz. B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta), which show increased transmissibility and resistance towards vaccines and therapies. Importantly, there is convincing evidence of increased susceptibility to SARS-CoV-2 infection among individuals with dysregulated immune response and comorbidities. Herein, we provide a comprehensive perspective regarding vulnerability of SARS-CoV-2 infection in patients with underlying medical comorbidities. We discuss ongoing vaccine (mRNA, protein-based, viral vector-based, etc.) and therapeutic (monoclonal antibodies, small molecules, plasma therapy, etc.) modalities designed to curb the COVID-19 pandemic. We also discuss in detail, the challenges posed by different SARS-CoV-2 variants of concern (VOC) identified across the globe and their effects on therapeutic and prophylactic interventions.
Project description:Since the COVID-19 outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus has evolved into variants with varied infectivity. Vaccines developed against COVID-19 infection have boosted immunity, but there is still uncertainty on how long the immunity from natural infection or vaccination will last. The present study attempts to outline the present level of information about the contagiousness and spread of SARS-CoV-2 variants of interest and variants of concern (VOCs). The keywords like COVID-19 vaccine types, VOCs, universal vaccines, bivalent, and other relevant terms were searched in NCBI, Science Direct, and WHO databases to review the published literature. The review provides an integrative discussion on the current state of knowledge on the type of vaccines developed against SARS-CoV-2, the safety and efficacy of COVID-19 vaccines concerning the VOCs, and prospects of novel universal, chimeric, and bivalent mRNA vaccines efficacy to fend off existing variants and other emerging coronaviruses. Genomic variation can be quite significant, as seen by the notable differences in impact, transmission rate, morbidity, and death during several human coronavirus outbreaks. Therefore, understanding the amount and characteristics of coronavirus genetic diversity in historical and contemporary strains can help researchers get an edge over upcoming variants.
Project description:The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shaken the global health system. Various nanotechnology-based strategies for vaccine development have played pivotal roles in fighting against SARS-CoV-2. Among them, the safe and effective protein-based nanoparticle (NP) platforms display a highly repetitive array of foreign antigens on their surface, which is urgent for improving the immunogenicity of vaccines. These platforms greatly improved antigen uptake by antigen presenting cells (APCs), lymph node trafficking, and B cell activation, due to the optimal size, multivalence, and versatility of NPs. In this review, we summarize the advances of protein-based NP platforms, strategies of antigen attachment, and the current progress of clinical and preclinical trials in the development of SARS-CoV-2 vaccines based on protein-based NP platforms. Importantly, the lessons learnt and design approaches developed for these NP platforms against SARS-CoV-2 also provide insights into the development of protein-based NP strategies for preventing other epidemic diseases.
Project description:Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Project description:The emergence of SARS-CoV-2 variants may cause resistance at the immunity level against current vaccines. Some emergent new variants have increased transmissibility, infectivity, hospitalization, and mortality. Since the administration of the first SARS-CoV-2 vaccine to a human in March 2020, there is an ongoing global race against SARS-CoV-2 to control the current pandemic situation. Spike (S) glycoprotein of SARS-CoV-2 is the main target for current vaccine development, which can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. The effectiveness of SARS-CoV-2 vaccines and other therapeutics developments are limited by the new emergent variants at the global level. We have discussed the emergent variants of SARS-CoV-2 on the efficacy of developed vaccines. Presently, most of the vaccines have been tremendously effective in severe diseases. However, there are still noteworthy challenges in certifying impartial vaccines; the stories of re-infections are generating more stressful conditions, and this needs further clinical evaluation.
Project description:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had become a global concern because of its unexpectedly high pathogenicity and transmissibility. SARS-CoV-2 variants that reduce the immune protection elicited from previous vaccination or natural infection raise challenges in controlling the spread of the pandemic. The development of universal vaccines against these variants seems to be a practical solution to alleviate the physical and economic effects caused by this disease, but it is hard to achieve. In this review, we describe the high mutation rate of RNA viruses and dynamic molecular structures of SARS-CoV-2 variants in several major neutralizing epitopes, trying to answer the question of why universal vaccines are difficult to design. Understanding the biological basis of immune evasion is crucial for combating these obstacles. We then summarize several advancements worthy of further study, including heterologous prime-boost regimens, construction of chimeric immunogens, design of protein nanoparticle antigens, and utilization of conserved neutralizing epitopes. The fact that some immunogens can induce cross-reactive immune responses against heterologous coronaviruses provides hints for universal vaccine development. We hope this review can provide inspiration to current universal vaccine studies.
Project description:Viral variants of concern may emerge with dangerous resistance to the immunity generated by the current vaccines to prevent coronavirus disease 2019 (Covid-19). Moreover, if some variants of concern have increased transmissibility or virulence, the importance of efficient public health measures and vaccination programs will increase. The global response must be both timely and science based.
Project description:Since September 2020, the world has had more than 28 million cases of coronavirus disease 2019 (COVID-19). Many countries are facing a second wave of the COVID-19 outbreak. A pressing need is evident for the development of a potent vaccine to control the SARS-CoV-2. Institutions and companies in many countries have announced their vaccine research programs and progress against the COVID-19. While most vaccines go through the designation and preparation stages, some of them are under evaluation for efficacy among animal models and clinical trials, and three approved vaccine candidates have been introduced for limited exploitation in Russia and China. An effective vaccine must induce a protective response of both cell-mediated and humoral immunity and should meet the safety and efficacy criteria. Although the emergence of new technologies has accelerated the development of vaccines, there are several challenges on the way, such as limited knowledge about the pathophysiology of the virus, inducing humoral or cellular immunity, immune enhancement with animal coronavirus vaccines, and lack of an appropriate animal model. In this review, we firstly discuss the immune responses against SARS-CoV-2 disease, subsequently, give an overview of several vaccine platforms for SARS-CoV-2 under clinical trials and challenges in vaccine development against this virus.
Project description:The rapid and remarkably successful development, manufacture, and deployment of several effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is now tempered by three key challenges. First, reducing virus transmission will require prevention of asymptomatic and mild infections in addition to severe symptomatic infections. Second, the emergence of variants of concern with mutations in the S protein's receptor binding domain increases the likelihood that vaccines will have to be updated because some of these mutations render variants less optimally targeted by current vaccines. This will require coordinated global SARS-CoV-2 surveillance to link genotypes to phenotypes, potentially using the WHO's global influenza surveillance program as a guide. Third, concerns about the longevity of vaccine-induced immunity highlight the potential need for re-vaccination, depending on the extent to which the virus has been controlled and whether re-vaccination can target those at greatest risk of severe illness. Fortunately, as I discuss in this review, these challenges can be addressed.