Unknown

Dataset Information

0

Formulation development of a live attenuated human rotavirus (RV3-BB) vaccine candidate for use in low- and middle-income countries.


ABSTRACT: Formulation development was performed with the live, attenuated, human neonatal rotavirus vaccine candidate (RV3-BB) with three main objectives to facilitate use in low- and middle- income countries including (1) a liquid, 2-8°C stable vaccine, (2) no necessity for pre-neutralization of gastric acid prior to oral administration of a small-volume dose, and (3) a low-cost vaccine dosage form. Implementation of a high-throughput RT-qPCR viral infectivity assay for RV3-BB, which correlated well with traditional FFA assays in terms of monitoring RV3-BB stability profiles, enabled more rapid and comprehensive formulation development studies. A wide variety of different classes and types of pharmaceutical excipients were screened for their ability to stabilize RV3-BB during exposure to elevated temperatures, freeze-thaw and agitation stresses. Sucrose (50-60% w/v), PEG-3350, and a solution pH of 7.8 were selected as promising stabilizers. Using a combination of an in vitro gastric digestion model (to mimic oral delivery conditions) and accelerated storage stability studies, several buffering agents (e.g., succinate, adipate and acetate at ~200 to 400 mM) were shown to protect RV3-BB under acidic conditions, and at the same time, minimize virus destabilization during storage. Several optimized RV3-BB candidate formulations were identified based on negligible viral infectivity losses during storage at 2-8°C and -20°C for up to 12 months, as well as by relative stability comparisons at 15°C and 25°C (up to 12 and 3 months, respectively). These RV3-BB stability results are discussed in the context of stability profiles of other rotavirus serotypes as well as future RV3-BB formulation development activities.

SUBMITTER: Kumar P 

PROVIDER: S-EPMC8189091 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5975418 | biostudies-literature
| S-EPMC5774175 | biostudies-literature
| S-EPMC11011179 | biostudies-literature
| S-EPMC6143382 | biostudies-literature
| S-EPMC7075413 | biostudies-literature
| S-EPMC2925181 | biostudies-literature
| S-EPMC6167161 | biostudies-literature
| S-EPMC9746532 | biostudies-literature
| S-EPMC8115752 | biostudies-literature
| S-EPMC6488528 | biostudies-literature