Project description:ACE2 on epithelial cells is the SARS-CoV-2 entry receptor. Single-cell RNA-sequencing data derived from two COVID-19 cohorts revealed that MAP4K3/GLK-positive epithelial cells were increased in patients. SARS-CoV-2-induced GLK overexpression in epithelial cells correlated with COVID-19 severity and vesicle secretion. GLK overexpression induced the epithelial cell-derived exosomes containing ACE2; the GLK-induced exosomes transported ACE2 proteins to recipient cells, facilitating pseudovirus infection. Consistently, ACE2 proteins were increased in the serum exosomes from another COVID-19 cohort. Remarkably, SARS-CoV-2 spike protein stimulated GLK, and GLK stabilized ACE2 in epithelial cells. Mechanistically, GLK phosphorylated ACE2 at two serine residues (Ser776, Ser783), leading to dissociation of ACE2 from its E3 ligase UBR4. Reduction of UBR4-induced Lys48-linked ubiquitination at three lysine residues (Lys26, Lys112, Lys114) of ACE2 prevented its degradation. Furthermore, SARS-CoV-2 pseudovirus or live virus infection in humanized ACE2 mice induced GLK and ACE2 protein levels, as well as ACE2-containing exosomes. Collectively, ACE2 stabilization by SARS-CoV-2-induced MAP4K3/GLK may contribute to the pathogenesis of COVID-19.
Project description:The exact role of viral replication in patients with severe COVID-19 has not been extensively studied, and it has only been possible to demonstrate the presence of replicative virus for more than 3 months in a few cases using different techniques. Our objective was to study the presence of RNA SARS-CoV-2 in autopsy samples of patients who died from COVID-19 long after the onset of symptoms. Secondary superimposed pulmonary infections present in these patients were also studied. We present an autopsy series of 27 COVID-19 patients with long disease duration, where pulmonary and extrapulmonary samples were obtained. In addition to histopathological analysis, viral genomic RNA (gRNA) and viral subgenomic RNA (sgRNA) were detected using RT-PCR and in situ hybridization, and viral protein was detected using immunohistochemistry. This series includes 26 adults with a median duration of 39 days from onset of symptoms to death (ranging 9-108 days), 92% of them subjected to immunomodulatory therapy, and an infant patient. We detected gRNA in the lung of all but one patient, including those with longer disease duration. SgRNA was detected in 11 out of 17 patients (64.7%) with illness duration up to 6 weeks and in 3 out of 9 patients (33.3%) with more than 6 weeks of disease progression. Viral protein was detected using immunohistochemistry and viral mRNA was detected using in situ hybridization in 3 out of 4 adult patients with illness duration of <2 weeks, but in none of the 23 adult patients with an illness duration of >2 weeks. A remarkable result was the detection of viral protein, gRNA and sgRNA in the lung cells of the pediatric patient after 95 days of illness. Additional pulmonary infections included: 9 acute bronchopneumonia, 2 aspergillosis, 2 cytomegalovirus, and 1 BK virus infection. These results suggest that in severe COVID-19, SARS-CoV-2 could persist for longer periods than expected, especially in immunocompromised populations, contributing to the persistence of chronic lung lesions. Additional infections contribute to the fatal course of the disease.
Project description:COVID-19, caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple-organ failure, but little is known about its pathophysiology. Here, we generated single-cell atlases of 23 lung, 16 kidney, 15 liver and 18 heart COVID-19 autopsy donor tissue samples, and spatial atlases of 14 lung donors. Integrated computational analysis uncovered substantial remodeling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of myofibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in COVID-19 donor heart tissue, and mapped cell types and genes implicated with disease severity based on COVID-19 GWAS. Our foundational dataset elucidates the biological impact of severe SARS-CoV-2 infection across the body a key step towards new treatments.
Project description:BackgroundPeople suffering from COVID-19 are typically considered non-infectious 14 days after diagnosis if symptoms have disappeared for at least 48 h. We describe three patients who independently acquired their infection. These three patients experienced mild COVID-19 and completely recovered symptomatically within 10 days, but remained PCR-positive in deep pharyngeal samples for at least 38 days. We attempted to isolate virus from pharyngeal swabs to investigate whether these patients still carried infectious virus.MethodsInfectious virus was amplified in Vero E6 cells and characterized by electron microscopy and WGS. The immune response was investigated by ELISA and peptide arrays.ResultsIn all three cases, infectious and replication-competent virus was isolated and amplified in Vero E6 cells. Virus replication was detected by RT-PCR and immunofluorescence microscopy. Electron microscopy confirmed the formation of intact SARS-CoV-2 particles. For a more detailed analysis, all three isolates were characterized by whole-genome sequencing (WGS). The sequence data revealed that the isolates belonged to the 20A or 20C clade, and two mutations in ORF8 were identified among other mutations that could be relevant for establishing a long-term infection. Characterization of the humoral immune response in comparison to patients that had fully recovered from mild COVID-19 revealed a lack of antibodies binding to sequential epitopes of the receptor-binding domain (RBD) for the long-term infected patients.ConclusionThus, a small portion of COVID-19 patients displays long-term infectivity and termination of quarantine periods after 14 days, without PCR-based testing, should be reconsidered critically.
Project description:Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely detected in wastewater in many countries to track the COVID-19 pandemic development, it is still a lack of clear understanding of the persistence of SARS-CoV-2 in raw sewage, especially after the end of the COVID-19 pandemic event. To fill this knowledge gap, this study conducted a field trial on the SARS-CoV-2 presence in various wastewater facilities after the end of the COVID-19 epidemics in Beijing. The result showed that the wastewater treatment facility is a large SARS-CoV-2 repository. The viral RNA was still present in hospital sewage for 15 days and was continually detected in municipal WWTPs for more than 19 days after the end of the local COVID-19 epidemics. The T90 values of the SARS-CoV-2 RNA in raw wastewater were 17.17-8.42 days in the wastewater at 4 ℃ and 26 ℃, respectively, meaning that the decay rates of low titer viruses in raw sewage were much faster. The results confirmed that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, especially at lower temperatures. The sewage systems would be a virus repository and prolong the presence of the residual SARS-CoV-2 RNA. The study could enhance further understanding of the presence of SARS-CoV-2 RNA in raw wastewater.
Project description:Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.
Project description:Limited information is available on the decay rate of endogenous SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA in wastewater and primary settled solids, potentially limiting an understanding of how transit or holding times within wastewater infrastructure might impact RNA measurements and their relationship to community COVID-19 infections. In this study, primary settled solids samples were collected from two wastewater treatment plants in the San Francisco Bay Area. Samples were thoroughly mixed, aliquoted into subsamples, and stored at 4, 22, and 37 °C for 10 days. The concentrations of SARS-CoV-2 (N1 and N2 targets) and PMMoV RNA were measured using an RT-ddPCR. Limited decay (<1 log10 reduction) was observed in the detection of viral RNA targets at all temperature conditions, suggesting that SARS-CoV-2 and PMMoV RNA can be highly persistent in solids. First-order decay rate constants ranged from 0.011 to 0.098 day-1 for SARS-CoV-2 RNA and from 0.010 to 0.091 day-1 for PMMoV RNA depending on the temperature conditions. A slower decay was observed for SARS-CoV-2 RNA in primary settled solids compared to previously reported decay in wastewater influent. Further research is needed to understand if solid content and wastewater characteristics might influence the persistence of viral RNA targets.