Project description:Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.
Project description:BackgroundDeveloping an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method.MethodsHere we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis.ResultsIn our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study.ConclusionsBased on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.
Project description:Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.
Project description:BackgroundRecent reports demonstrate robust serological responses to a single dose of messenger RNA (mRNA) vaccines in individuals previously infected with SARS-CoV-2. Data on immune responses following a single-dose adenovirus-vectored vaccine expressing the SARS-CoV-2 spike protein (ChAdOx1 nCoV-19) in individuals with previous SARS-CoV-2 infection are however limited, and current guidelines recommend a two-dose regimen regardless of preexisting immunity.MethodsWe compared RBD-specific IgG and RBD-ACE2 blocking antibodies against SARS-CoV-2 wild type and variants of concern following two doses of the mRNA vaccine BNT162b2 in SARS-CoV-2 naïve healthcare workers (n=65) and a single dose of the adenovector vaccine ChAdOx1 nCoV-19 in 82 healthcare workers more than (n=45) and less than (n=37) 11 months post mild SARS-CoV-2 infection at time of vaccination.FindingsThe post-vaccine levels of RBD-specific IgG and neutralizing antibodies against the SARS-CoV-2 wild type and variants of concern including Delta lineage 1.617.2 were similar or higher in participants receiving a single dose of ChAdOx1 nCoV-19 vaccine post SARS-CoV-2 infection (both more than and less than 11 months post infection) compared to SARS-CoV-2 naïve participants who received two doses of BNT162b2 vaccine.InterpretationOur data support that a single dose ChAdOx1 nCoV-19 vaccine that is administered up to at least 11 months post SARS-CoV-2 infection serves as an effective immune booster. This provides a possible rationale for a single-dose vaccine regimen.FundingA full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Project description:In a cohort of BNT162b2 (Pfizer-BioNTech) mRNA vaccine recipients (n = 1,090), we observed that spike-specific IgG antibody levels and ACE2 antibody binding inhibition responses elicited by a single vaccine dose in individuals with prior SARS-CoV-2 infection (n = 35) were similar to those seen after two doses of vaccine in individuals without prior infection (n = 228). Post-vaccine symptoms were more prominent for those with prior infection after the first dose, but symptomology was similar between groups after the second dose.
Project description:We compared the serum neutralizing antibody titers before and after two doses of the BNT162b2 COVID-19 vaccine in ten individuals who recovered from SARS-CoV-2 infection prior to vaccination to 20 individuals with no history of infection, against clinical isolates of B.1.1.7, B.1.351, P.1, and the original SARS-CoV-2 virus. Vaccination boosted pre-existing levels of anti-SARS-CoV-2 spike antibodies 10-fold in previously infected individuals, but not to levels significantly higher than those of uninfected vaccinees. However, neutralizing antibody titers increased in previously infected vaccinees relative to uninfected vaccinees against every variant tested: 5.2-fold against B.1.1.7, 6.5-fold against B.1.351, 4.3-fold against P.1, and 3.4-fold against original SARS-CoV-2. Our study indicates that a first-generation COVID-19 vaccine provides broad protection from SARS-CoV-2variants in individuals with previous infection.
Project description:Seroconversion rates following infection and vaccination are lower in dialysis patients compared to healthy controls. There is an urgent need for the characterization of humoral responses and success of a single-dose SARS-CoV-2 vaccination in previously infected dialysis patients. We performed a dual-center cohort study comparing three different groups: 25 unvaccinated hemodialysis patients after PCR-confirmed COVID-19 (Group 1), 43 hemodialysis patients after two-time BNT162b2 vaccination without prior SARS-CoV-2 infection (Group 2), and 13 single-dose vaccinated hemodialysis patients with prior SARS-CoV-2 infection (Group 3). Group 3 consists of seven patients from Group 1 and 6 additional patients with sera only available after single-dose vaccination. Anti-S1 IgG, neutralizing antibodies, and antibodies against various SARS-CoV-2 protein epitopes were measured 3 weeks after the first and 3 weeks after the second vaccination in patients without prior SARS-CoV-2 infection, 6 weeks after the onset of COVID-19 in unvaccinated patients, and 3 weeks after single-dose vaccination in patients with prior SARS-CoV-2 infection, respectively. Unvaccinated patients after COVID-19 showed a significantly higher neutralizing antibody capacity than two-time vaccinated patients without prior COVID-19 [median (IQR) percent inhibition 88.0 (71.5-95.5) vs. 50.7 (26.4-81.0); P = 0.018]. After one single vaccine dose, previously infected individuals generated 15- to 34-fold higher levels of anti-S1 IgG than age- and dialysis vintage-matched unvaccinated patients after infection or two-time vaccinated patients without prior SARS-CoV-2 infection with a median (IQR) index of 274 (151-791) compared to 18 (8-41) and 8 (1-21) (for both P < 0.001). With a median (IQR) percent inhibition of 97.6 (97.2-98.9), the neutralizing capacity of SARS-CoV-2 antibodies was significantly higher in single-dose vaccinated patients with prior SARS-CoV-2 infection compared to other groups (for both P < 0.01). Bead-based analysis showed high antibody reactivity against various SARS-CoV-2 spike protein epitopes after single-dose vaccination in previously infected patients. In conclusion, single-dose vaccination in previously infected dialysis patients induced a strong and broad antibody reactivity against various SARS-CoV-2 spike protein epitopes with high neutralizing capacity.
Project description:(1) Background: In many infections, antibodies play a crucial role in controlling infection. In COVID-19, the dynamics of the immune system response to SARS-CoV-2 is not fully understood. (2) Methods: The study was conducted on 120 healthcare workers from Dr. Antoni Jurasz University Hospital No. 1 in Bydgoszcz, between June and December 2020. In all participants, IgA and IgG antibody serum concentrations were measured using the semi-quantitative Anti-SARS-CoV-2 ELISA test (Euroimmun). After vaccination, in January and February 2021, antibody levels were examined using the quantitative IgG Anti-SARS-CoV-2 Quantivac ELISA test (Euroimmun). (3) Results: During the whole study period, the SARS-CoV-2 infection was confirmed in 29 (24.2%) participants. In all infected participants, IgA and IgG antibodies were detectable after infection by semi-quantitative serological tests. Levels of antibodies were higher one month after the first dose in the convalescents than in the non-previously infected participants. In this second group, the level of antibodies increased significantly after the second dose of vaccines compared to the first dose. (4) Conclusions: The level of antibodies after the first dose of vaccine in the convalescents' group is higher than in the SARS-CoV-2 non-infected group, but the differences disappear after the second vaccination.
Project description:ObjectivesThis study aimed to describe the longitudinal evolution of neutralizing antibody titres (NtAb) in three different cohorts of healthcare workers (HCWs), including vaccinated HCWs with and without a previous SARS-CoV-2 infection and previously infected unvaccinated HCWs. COVID-19 was mild or asymptomatic in those experiencing infection.MethodsNtAb was tested before BNT162b2 mRNA COVID-19 vaccine (V0), 20±2 days after the first dose (V1_20), 20±3 days (V2_20) and 90±2 days (V2_90) after the second dose in vaccinated HCWs and after about 2 months (N_60), 10 months (N_300) and 13 months (N_390) from natural infection in unvaccinated HCWs. NtAb were measured by authentic virus neutralization with a SARS-CoV-2 B.1 isolate circulating in Italy at HCW enrolment.ResultsSixty-two HCWs were enrolled. NtAb were comparable in infected HCWs with no or mild disease at all the study points. NtAb of uninfected HCWs were significantly lower with respect to those of previously infected HCWs at V1_20, V2_20 and V2_90. The median NtAb fold decrease from V2_20 to V2_90 was higher in the uninfected HCWs with respect to those with mild infection (6.26 vs 2.58, p=0.03) and to asymptomatic HCWs (6.26 vs 3.67, p=0.022). The median Nabt at N_390 was significantly lower than at N_60 (p=0.007).ConclusionsIn uninfected HCWs completing the two-dose vaccine schedule, a third mRNA vaccine dose is a reasonable option to counteract the substantial NtAb decline occurring at a significantly higher rate compared with previously infected, vaccinated HCWs. Although low, Nabt were still at a detectable level after 13 months in two-thirds of previously infected and unvaccinated HCWs.